
Pentium Pro Family
Developer’s Manual

Volume 2:
Programmer’s Reference Manual

NOTE: The Pentium Pro Family Developer’s Manual consists of three
books: Pentium Pro Family Developer’s Manual, Volume 1: Specifications
(Order Number 242690); Pentium Pro Family Developer’s Manual,
Volume 2: Programmer’s Reference Manual (Order Number 242691); and
the Pentium Pro Family Developer’s Manual, Volume 3: Operating System
Writer’s Guide (Order Number 242692).
Please refer to all three volumes when evaluating your design needs.

December 1995

PATENT NOTICE

Through its investment in computer technology, Intel Corporation (Intel) has acquired numerous
proprietary rights, including patents issued by the U.S. Patent and Trademark Office. Intel has
patents covering the use or implementation of processors in combination with other products,
e.g., certain computer systems. System and method patents or pending patents, of Intel and
others, may apply to these systems. A separate license may be required for their use (see Intel
Terms and Conditions for details). Specific Intel patents include U.S. patent 4,972,338.

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except
as provided in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing
your product order.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

iii

TABLE OF CONTENTS

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S MANUAL,

VOLUME 2 . 1-1
1.2. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S MANUAL,

VOLUME 3 . 1-2
1.3. NOTATIONAL CONVENTIONS. 1-4
1.3.1. Bit and Byte Order . 1-4
1.3.2. Reserved Bits and Software Compatibility . 1-4
1.3.3. Instruction Operands . 1-5
1.3.4. Hexadecimal and Binary Numbers . 1-6
1.3.5. Segmented Addressing . 1-6
1.3.6. Exceptions . 1-6
1.4. RELATED LITERATURE . 1-7

CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR
2.1. NEW ARCHITECTURAL FEATURES . 2-1
2.1.1. New and Extended Instructions. 2-2
2.1.2. New Memory Management Features . 2-2
2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES . 2-3
2.2.1. Model-Specific Registers. 2-3
2.2.2. Memory Type Range Registers. 2-4
2.2.3. Machine-Check Exception and Architecture . 2-4
2.2.4. Performance Monitoring Counters. 2-5
2.3. INTRODUCTION TO THE PENTIUM PRO PROCESSOR’S ADVANCED

MICROARCHITECTURE . 2-5
2.4. DETAILED DESCRIPTION OF THE PENTIUM PRO PROCESSOR

MICROARCHITECTURE . 2-7
2.4.1. Memory Subsystem. 2-8
2.4.2. The Fetch/Decode Unit . 2-9
2.4.3. Instruction Pool (Reorder Buffer). 2-10
2.4.4. Dispatch/Execute Unit . 2-10
2.4.5. Retirement Unit . 2-11

CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1. MODES OF OPERATION . 3-1
3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT 3-2
3.3. MEMORY ORGANIZATION. 3-2
3.4. MODES OF OPERATION . 3-4
3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES. 3-4
3.6. REGISTERS. 3-5
3.6.1. General-Purpose Data Registers . 3-5
3.6.2. Segment Registers . 3-7
3.6.3. EFLAGS Register . 3-9
3.6.3.1. Status Flags . 3-10
3.6.3.2. DF Flag . 3-11
3.6.4. System Flags and IOPL Field . 3-11

TABLE OF CONTENTS

iv

3.7. INSTRUCTION POINTER . 3-12
3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES. 3-13

CHAPTER 4
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
4.1. PROCEDURE CALL TYPES . 4-1
4.2. PROCEDURE STACK . 4-1
4.2.1. Stack Alignment. 4-2
4.2.2. Address-Size Attribute for Stack . 4-3
4.2.3. Procedure Linking Information. 4-3
4.2.3.1. Stack-Frame Base Pointer . 4-3
4.2.3.2. Return Instruction Pointer . 4-4
4.3. CALLING PROCEDURES USING CALL AND RET . 4-4
4.3.1. Near CALL and RET Operation. 4-4
4.3.2. Far CALL and RET Operation . 4-5
4.3.3. Parameter Passing . 4-5
4.3.3.1. Passing Parameters Through the General-Purpose Registers 4-5
4.3.3.2. Passing Parameters on the Stack . 4-6
4.3.3.3. Passing Parameters in an Argument List . 4-6
4.3.4. Saving Procedure State Information . 4-6
4.3.5. Calls to Other Privilege Levels . 4-6
4.3.6. CALL and RET Operation Between Privilege Levels . 4-8
4.4. INTERRUPTS AND EXCEPTIONS . 4-9
4.4.1. Call and Return Operation for Interrupt or Exception Handling Procedures . . . 4-11
4.4.2. Calls to an Interrupt or Exception Handler Tasks . 4-13
4.4.3. Interrupt and Exception Handling in Real-Address Mode 4-14
4.4.4. INTn, INTO, INT3, and BOUND Instructions . 4-14
4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES. 4-15
4.5.1. ENTER Instruction. 4-15
4.5.2. LEAVE Instruction . 4-21

CHAPTER 5
DATA TYPES AND ADDRESSING MODES
5.1. FUNDAMENTAL DATA TYPES. 5-1
5.1.1. Alignment of Words, Doublewords, and Quadwords. 5-1
5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES 5-2
5.2.1. Integers . 5-2
5.2.2. Unsigned Integers . 5-4
5.2.3. BCD Integers. 5-4
5.2.4. Pointers . 5-4
5.2.5. Bit Fields . 5-4
5.2.6. Strings . 5-4
5.2.7. Floating-Point Data Types . 5-4
5.3. OPERAND ADDRESSING. 5-5
5.3.1. Immediate Operands. 5-5
5.3.2. Register Operands . 5-5
5.3.3. Memory Operands. 5-6
5.3.3.1. Specifying a Segment Selector. 5-6
5.3.3.2. Specifying an Offset . 5-7
5.3.3.3. Assembler Addressing Modes . 5-9
5.3.4. I/O Port Addressing . 5-9

v

TABLE OF CONTENTS

CHAPTER 6
INSTRUCTION SET SUMMARY
6.1. NEW INSTRUCTIONS IN THE PENTIUM PRO PROCESSOR. 6-1
6.2. INSTRUCTION SET LIST . 6-1
6.2.1. Integer Instructions . 6-2
6.2.1.1. Data Transfer Instructions. 6-2
6.2.1.2. Binary Arithmetic . 6-3
6.2.1.3. Decimal Arithmetic . 6-3
6.2.1.4. Logic Instructions . 6-4
6.2.1.5. Bit and Byte Instructions . 6-4
6.2.1.6. Control Transfer Instructions. 6-5
6.2.1.7. String Instructions . 6-6
6.2.1.8. Flag Control Instructions . 6-7
6.2.1.9. Segment Register Instructions . 6-7
6.2.1.10. Miscellaneous Instructions . 6-8
6.2.2. Floating-Point Instructions . 6-8
6.2.2.1. Data Transfer . 6-8
6.2.2.2. Basic Arithmetic . 6-9
6.2.2.3. Comparison. 6-9
6.2.2.4. Transcendental . 6-10
6.2.2.5. Load Constants. 6-10
6.2.2.6. FPU Control . 6-11
6.2.3. System Instructions . 6-11
6.3. DATA MOVEMENT INSTRUCTIONS . 6-12
6.3.1. General-Purpose Data Movement Instructions . 6-13
6.3.1.1. Move Instruction . 6-13
6.3.1.2. Conditional Move Instructions. 6-13
6.3.1.3. Exchange Instructions. 6-15
6.3.2. Stack Manipulation Instructions . 6-16
6.3.2.1. Type Conversion Instructions . 6-18
6.3.2.2. Simple Conversion . 6-18
6.3.2.3. Move and Convert. 6-19
6.4. BINARY ARITHMETIC INSTRUCTIONS . 6-19
6.4.1. Addition and Subtraction Instructions . 6-19
6.4.2. Increment and Decrement Instructions . 6-19
6.4.3. Comparison and Sign Change Instruction . 6-20
6.4.4. Multiplication and Divide Instructions. 6-20
6.5. DECIMAL ARITHMETIC INSTRUCTIONS. 6-20
6.5.1. Packed BCD Adjustment Instructions . 6-21
6.5.2. Unpacked BCD Adjustment Instructions . 6-21
6.6. LOGICAL INSTRUCTIONS . 6-22
6.7. SHIFT AND ROTATE INSTRUCTIONS . 6-22
6.7.1. Shift Instructions . 6-22
6.7.2. Double-shift Instructions . 6-24
6.7.3. Rotate Instructions. 6-25
6.8. BIT AND BYTE INSTRUCTIONS . 6-26
6.8.1. Bit Test and Modify Instructions. 6-26
6.8.2. Bit Scan Instructions . 6-26
6.8.3. Byte-Set-On-Condition Instructions . 6-27
6.8.4. Test Instruction . 6-27
6.9. CONTROL TRANSFER INSTRUCTIONS . 6-27
6.9.1. Unconditional Transfer Instructions . 6-27

TABLE OF CONTENTS

vi

6.9.1.1. Jump Instruction . 6-27
6.9.1.2. Call and Return Instructions . 6-28
6.9.1.3. Return-From-Interrupt Instruction . 6-29
6.9.2. Conditional Transfer Instructions. 6-29
6.9.2.1. Conditional Jump Instructions. 6-29
6.9.2.2. Loop Instructions . 6-30
6.9.2.3. Jump If Zero Instructions . 6-31
6.9.3. Software Interrupts . 6-31
6.10. STRING OPERATIONS . 6-32
6.10.1. Repeating String Operations . 6-33
6.11. I/O INSTRUCTIONS. 6-33
6.12. ENTER AND LEAVE INSTRUCTIONS . 6-34
6.13. EFLAGS INSTRUCTIONS . 6-34
6.13.1. Carry and Direction Flag Instructions . 6-34
6.13.2. Interrupt Flag Instructions . 6-34
6.13.3. EFLAGS Transfer Instructions. 6-35
6.13.4. Interrupt Flag Instructions . 6-35
6.14. SEGMENT REGISTER INSTRUCTIONS . 6-36
6.14.1. Segment-Register Load and Store Instructions. 6-36
6.14.2. Far Control Transfer Instructions. 6-36
6.14.3. Software Interrupt Instructions. 6-36
6.14.4. Load Far Pointer Instructions . 6-36
6.15. MISCELLANEOUS INSTRUCTIONS. 6-37
6.15.1. Address Computation Instruction . 6-37
6.15.2. Table Lookup Instructions . 6-37
6.15.3. Processor Identification Instruction . 6-37
6.15.4. No-Operation and Undefined Instructions . 6-38

CHAPTER 7
FLOATING-POINT UNIT
7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH COPROCESSORS 7-1
7.2. REAL NUMBERS AND FLOATING-POINT FORMATS. 7-1
7.2.1. Real Number System . 7-1
7.2.2. Floating-Point Format . 7-2
7.2.2.1. Normalized Numbers . 7-3
7.2.2.2. Biased Exponent. 7-4
7.2.3. Real Number and Non-Number Encodings. 7-4
7.2.3.1. Signed Zeros . 7-4
7.2.3.2. Normalized and Denormalized Finite Numbers . 7-5
7.2.3.3. Signed Infinities . 7-6
7.2.3.4. NaNs. 7-7
7.2.4. Indefinite . 7-7
7.3. FPU ARCHITECTURE. 7-7
7.3.1. The FPU Data Registers . 7-8
7.3.1.1. Parameter Passing With the FPU Register Stack . 7-10
7.3.2. FPU Status Register . 7-11
7.3.2.1. Top of Stack (TOP) Pointer . 7-11
7.3.2.2. Condition Code Flags . 7-11
7.3.2.3. Exception Flags . 7-13
7.3.2.4. Stack Fault Flag . 7-13
7.3.3. Branching and Conditional Moves on FPU Condition Codes 7-13
7.3.4. FPU Control Word . 7-15

vii

TABLE OF CONTENTS

7.3.4.1. Exception-Flag Masks. 7-15
7.3.4.2. Precision Control Field . 7-15
7.3.4.3. Rounding Control Field . 7-16
7.3.5. Infinity Control Flag . 7-18
7.3.6. FPU Tag Word. 7-18
7.3.7. The Floating-Point Instruction and Data Pointers . 7-19
7.3.8. Last Instruction Opcode. 7-19
7.3.9. Saving the FPU’s State . 7-20
7.4. FLOATING-POINT DATA TYPES AND FORMATS. 7-22
7.4.1. Real Numbers . 7-23
7.4.2. Binary Integers. 7-25
7.4.3. Decimal Integers . 7-27
7.4.4. Unsupported Extended-Real Encodings . 7-28
7.5. FPU INSTRUCTION SET. 7-28
7.5.1. Escape (ESC) Instructions. 7-29
7.5.2. FPU Instruction Operands . 7-29
7.5.3. Data Transfer Instructions . 7-30
7.5.4. Load Constant Instructions . 7-31
7.5.5. Basic Arithmetic Instructions . 7-32
7.5.6. Comparison and Classification Instructions . 7-33
7.5.6.1. Branching on the FPU Condition Codes . 7-35
7.5.7. Trigonometric Instructions . 7-35
7.5.8. Pi . 7-36
7.5.9. Logarithmic, Exponential, and Scale . 7-37
7.5.10. Transcendental Instruction Accuracy. 7-37
7.5.11. FPU Control Instructions . 7-38
7.5.12. Waiting Vs. Non-Waiting Instructions . 7-39
7.5.13. Unsupported FPU Instructions. 7-39
7.6. OPERATING ON NANS . 7-39
7.7. FLOATING-POINT EXCEPTION HANDLING . 7-40
7.7.1. Arithmetic vs. Non-Arithmetic Instructions . 7-41
7.7.2. Automatic Exception Handling. 7-41
7.7.3. Software Exception Handling. 7-41
7.8. FLOATING-POINT EXCEPTION CONDITIONS . 7-44
7.8.1. Invalid Operation Exception. 7-44
7.8.1.1. Stack Overflow or Underflow Exception (#IS) . 7-44
7.8.1.2. Invalid Arithmetic Operand Exception (#IA) . 7-45
7.8.2. Division-By-Zero Exception (#Z) . 7-45
7.8.3. Denormal Operand Exception (#D) . 7-47
7.8.4. Numeric Overflow Exception (#O) . 7-47
7.8.5. Numeric Underflow Exception (#U) . 7-48
7.8.6. Inexact-Result (Precision) Exception (#P) . 7-49
7.8.7. Exception Priority . 7-50
7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATION . 7-51

CHAPTER 8
INPUT/OUTPUT
8.1. I/O PORT ADDRESSING . 8-1
8.2. I/O PORT HARDWARE . 8-1
8.3. I/O ADDRESS SPACE . 8-2
8.3.1. Memory-Mapped I/O . 8-2
8.4. I/O INSTRUCTIONS. 8-2

TABLE OF CONTENTS

viii

8.5. PROTECTED-MODE I/O . 8-4
8.5.1. I/O Privilege Level . 8-4
8.5.2. I/O Permission Bit Map . 8-5
8.5.3. Caching and Paging . 8-6
8.6. ORDERING I/O . 8-6

CHAPTER 9
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
9.1. PROCESSOR IDENTIFICATION. 9-1
9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE PROCESSORS 9-2

CHAPTER 10
INTEL ARCHITECTURE COMPATIBILITY
10.1. RESERVED BITS. 10-1
10.2. ENABLING NEW FUNCTIONS AND MODES. 10-2
10.3. DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE . 10-2
10.4. NEW INSTRUCTIONS. 10-2
10.4.1. New Pentium Pro Processor Instructions . 10-3
10.4.2. New Pentium Processor Instructions. 10-3
10.4.3. New Intel486 Processor Instructions. 10-3
10.4.4. New Intel386 Processor Instructions. 10-4
10.5. OBSOLETE INSTRUCTIONS . 10-4
10.6. UNDEFINED OPCODES . 10-4
10.7. NEW FLAGS IN THE EFLAGS REGISTER. 10-4
10.7.1. New Pentium Processor Flags . 10-5
10.7.2. New Intel486 Processor Flags. 10-5
10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel

Architecture Processors . 10-5
10.8. STACK OPERATIONS. 10-5
10.8.1. PUSH SP. 10-5
10.8.2. EFLAGS Pushed On The Stack . 10-6
10.9. FPU . 10-6
10.9.1. Control Register CR0 Flags. 10-6
10.9.2. FPU Status Word. 10-7
10.9.2.1. Condition Code Flags (C0 through C3) . 10-7
10.9.2.2. Stack Fault Flag . 10-8
10.9.3. FPU Control Word . 10-8
10.9.4. FPU Tag Word. 10-8
10.9.5. Data Types . 10-9
10.9.5.1. NaNs. 10-9
10.9.5.2. Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 10-9
10.9.6. Floating-Point Exceptions . 10-10
10.9.6.1. Denormal Operand Exception (#D) . 10-10
10.9.6.2. Numeric Overflow Exception (#O) . 10-10
10.9.6.3. Numeric Underflow Exception (#U) . 10-11
10.9.6.4. Exception Precedence . 10-11
10.9.6.5. CS and EIP For FPU Exceptions . 10-11
10.9.6.6. FPU Error Signals. 10-11
10.9.6.7. Assertion of the FERR# Pin . 10-12
10.9.6.8. Invalid Operation Exception On Denormals . 10-12
10.9.6.9. Alignment Check Exceptions (#AC) . 10-12
10.9.6.10. Segment Not Present Exception During FLDENV 10-12

ix

TABLE OF CONTENTS

10.9.6.11. Device Not Available Exception (#NM) . 10-13
10.9.6.12. Coprocessor Segment Overrun Exception . 10-13
10.9.6.13. General Protection Exception (#GP). 10-13
10.9.6.14. Floating-Point Error Exception (#MF) . 10-13
10.9.7. Changes to Floating-Point Instructions . 10-13
10.9.7.1. New Floating-Point Instructions in the Intel Pentium Pro Processor. 10-13
10.9.7.2. FDIV, FPREM, and FSQRT Instructions. 10-14
10.9.7.3. FSCALE Instruction . 10-14
10.9.7.4. FPREM1 Instruction . 10-14
10.9.7.5. FPREM Instruction . 10-14
10.9.7.6. FUCOM, FUCOMP, and FUCOMPP Instructions. 10-14
10.9.7.7. FPTAN Instruction. 10-14
10.9.7.8. Stack Overflow . 10-15
10.9.7.9. FSIN, FCOS, and FSINCOS Instructions . 10-15
10.9.7.10. FPATAN Instruction . 10-15
10.9.7.11. F2XM1 Instruction. 10-15
10.9.7.12. FLD Instruction . 10-15
10.9.7.13. FXTRACT Instruction . 10-16
10.9.7.14. Load Constant Instructions . 10-16
10.9.7.15. FSETPM Instruction . 10-16
10.9.7.16. FXAM Instruction . 10-16
10.9.7.17. FSAVE and FSTENV Instructions. 10-17
10.9.8. Transcendental Instructions. 10-17
10.9.9. Obsolete Instructions . 10-17
10.9.10. WAIT/FWAIT Prefix Differences . 10-17
10.9.11. Operands Split Across Segments and/or Pages . 10-17
10.9.12. FPU Instruction Synchronization . 10-18

CHAPTER 11
INSTRUCTION SET REFERENCE
11.1. INSTRUCTION FORMAT. 11-1
11.1.1. Instruction Prefixes . 11-1
11.1.2. Opcode . 11-2
11.1.3. ModR/M and SIB Bytes . 11-2
11.1.4. Displacement and Immediate Bytes . 11-3
11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES. 11-7
11.2.1. Instruction Format . 11-7
11.2.1.1. Opcode Column . 11-7
11.2.1.2. Instruction Column . 11-8
11.2.1.3. Description Column. 11-10
11.2.1.4. Description . 11-10
11.2.2. Operation . 11-10
11.2.3. Flags Affected . 11-12
11.2.4. FPU Flags Affected . 11-13
11.2.5. Protected Mode Exceptions. 11-13
11.2.6. Real-Address Mode Exceptions . 11-14
11.2.7. Virtual-8086 Mode Exceptions . 11-14
11.2.8. Floating-Point Exceptions . 11-14
11.3. INSTRUCTION REFERENCE . 11-14

AAA—ASCII Adjust After Addition . 11-15
AAD—ASCII Adjust AX Before Division . 11-16
AAM—ASCII Adjust AX After Multiply . 11-17

TABLE OF CONTENTS

x

AAS—ASCII Adjust AL After Subtraction . 11-18
ADC—Add with Carry . 11-19
ADD—Add . 11-21
AND—Logical AND . 11-23
ARPL—Adjust RPL Field of Segment Selector . 11-25
BOUND—Check Array Index Against Bounds . 11-27
BSF—Bit Scan Forward . 11-29
BSR—Bit Scan Reverse . 11-31
BSWAP—Byte Swap . 11-33
BT—Bit Test . 11-34
BTC—Bit Test and Complement . 11-36
BTR—Bit Test and Reset . 11-38
BTS—Bit Test and Set . 11-40
CALL—Call Procedure . 11-42
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword 11-52
CDQ—Convert Double to Quad . 11-53
CLC—Clear Carry Flag . 11-54
CLD—Clear Direction Flag . 11-55
CLI—Clear Interrupt Flag . 11-56
CLTS—Clear Task-Switched Flag in CR0 . 11-58
CMC—Complement Carry Flag . 11-59
CMOVcc—Conditional Move . 11-60
CMP—Compare Two Operands . 11-64
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands 11-66
CMPXCHG—Compare and Exchange . 11-69
CMPXCHG8B—Compare and Exchange 8 Bytes . 11-71
CPUID—CPU Identification . 11-73
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword . 11-80
CWDE—Convert Word to Doubleword . 11-81
DAA—Decimal Adjust AL after Addition . 11-82
DAS—Decimal Adjust AL after Subtraction . 11-83
DEC—Decrement by 1 . 11-84
DIV—Unsigned Divide . 11-86
ENTER—Make Stack Frame for Procedure Parameters 11-89
F2XM1—Compute 2x–1 . 11-92
FABS—Absolute Value . 11-94
FADD/FADDP/FIADD—Add . 11-95
FBLD—Load Binary Coded Decimal . 11-98
FBSTP—Store BCD Integer and Pop . 11-100
FCHS—Change Sign . 11-103
FCLEX/FNCLEX—Clear Exceptions . 11-105
FCMOVcc—Floating-Point Conditional Move . 11-106
FCOM/FCOMP/FCOMPP—Compare Real . 11-108
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS . 11-111
FCOS—Cosine . 11-114
FDECSTP—Decrement Stack-Top Pointer . 11-116
FDIV/FDIVP/FIDIV—Divide . 11-117
FDIVR/FDIVRP/FIDIVR—Reverse Divide . 11-121
FFREE—Free Floating-Point Register . 11-125
FICOM/FICOMP—Compare Integer . 11-126
FILD—Load Integer . 11-128

xi

TABLE OF CONTENTS

FINCSTP—Increment Stack-Top Pointer . 11-130
FINIT/FNINIT—Initialize Floating-Point Unit . 11-131
FIST/FISTP—Store Integer . 11-132
FLD—Load Real . 11-135
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant . . 11-137
FLDCW—Load Control Word . 11-139
FLDENV—Load FPU Environment . 11-141
FMUL/FMULP/FIMUL—Multiply . 11-143
FNOP—No Operation . 11-146
FPATAN—Partial Arctangent . 11-147
FPREM—Partial Remainder . 11-149
FPREM1—Partial Remainder . 11-152
FPTAN—Partial Tangent . 11-155
FRNDINT—Round to Integer . 11-157
FRSTOR—Restore FPU State . 11-158
FSAVE/FNSAVE—Store FPU State . 11-160
FSCALE—Scale . 11-163
FSIN—Sine . 11-165
FSINCOS—Sine and Cosine . 11-167
FSQRT—Square Root . 11-169
FST/FSTP—Store Real . 11-171
FSTCW/FNSTCW—Store Control Word . 11-174
FSTENV/FNSTENV—Store FPU Environment . 11-176
FSTSW/FNSTSW—Store Status Word . 11-178
FSUB/FSUBP/FISUB—Subtract . 11-180
FSUBR/FSUBRP/FISUBR—Reverse Subtract . 11-183
FTST—TEST . 11-186
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real 11-188
FWAIT—Wait . 11-191
FXAM—Examine . 11-192
FXCH—Exchange Register Contents . 11-194
FXTRACT—Extract Exponent and Significand . 11-196
FYL2X—Compute y ∗ log2x . 11-198
FYL2XP1—Compute y ∗ log2(x +1) . 11-200
HLT—Halt . 11-202
IDIV—Signed Divide . 11-203
IMUL—Signed Multiply . 11-206
IN—Input from Port . 11-209
INC—Increment by 1 . 11-211
INS/INSB/INSW/INSD—Input from Port to String . 11-213
INTn/INTO/INT3—Call to Interrupt Procedure . 11-216
INVD—Invalidate Internal Caches . 11-227
INVLPG—Invalidate TLB Entry . 11-229
IRET/IRETD—Interrupt Return . 11-230
Jcc—Jump if Condition Is Met . 11-237
JMP—Jump . 11-241
LAHF—Load Status Flags into AH Register . 11-248
LAR—Load Access Rights Byte . 11-249
LDS/LES/LFS/LGS/LSS—Load Far Pointer . 11-252
LEA—Load Effective Address . 11-255
LEAVE—High Level Procedure Exit . 11-257
LES—Load Full Pointer . 11-259

TABLE OF CONTENTS

xii

LFS—Load Full Pointer . 11-260
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register 11-261
LGS—Load Full Pointer . 11-263
LLDT—Load Local Descriptor Table Register . 11-264
LIDT—Load Interrupt Descriptor Table Register . 11-266
LMSW—Load Machine Status Word . 11-267
LOCK—Assert LOCK# Signal Prefix . 11-269
LODS/LODSB/LODSW/LODSD—Load String Operand 11-271
LOOP/LOOPcc—Loop According to ECX Counter 11-273
LSL—Load Segment Limit . 11-275
LSS—Load Full Pointer . 11-278
LTR—Load Task Register . 11-279
MOV—Move . 11-281
MOV—Move to/from Control Registers . 11-285
MOV—Move to/from Debug Registers . 11-287
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String 11-289
MOVSX—Move with Sign-Extension . 11-291
MOVZX—Move with Zero-Extend . 11-292
MUL—Unsigned Multiplication of AL, AX, or EAX . 11-294
NEG—Two's Complement Negation . 11-296
NOP—No Operation . 11-298
NOT—One's Complement Negation . 11-299
OR—Logical Inclusive OR . 11-301
OUT—Output to Port . 11-303
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port 11-305
POP—Pop a Value from the Stack . 11-308
POPA/POPAD—Pop All General-Purpose Registers 11-312
POPF/POPFD—Pop Stack into EFLAGS Register 11-314
PUSH—Push Word or Doubleword Onto the Stack 11-317
PUSHA/PUSHAD—Push All General-Purpose Registers 11-320
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack 11-322
RCL/RCR/ROL/ROR-—Rotate . 11-324
RDMSR—Read from Model Specific Register . 11-328
RDPMC—Read Performance-Monitoring Counters 11-330
RDTSC—Read Time-Stamp Counter . 11-332
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 11-333
RET—Return from Procedure . 11-336
ROL/ROR—Rotate . 11-342
RSM—Resume from System Management Mode . 11-343
SAHF—Store AH into Flags . 11-344
SAL/SAR/SHL/SHR—Shift Instructions . 11-345
SBB—Integer Subtraction with Borrow . 11-349
SCAS/SCASB/SCASW/SCASD—Scan String Data 11-351
SETcc—Set Byte on Condition . 11-353
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register 11-356
SHL/SHR—Shift Instructions . 11-359
SHLD—Double Precision Shift Left . 11-360
SHRD—Double Precision Shift Right . 11-362
SIDT—Store Interrupt Descriptor Table Register . 11-364
SLDT—Store Local Descriptor Table Register . 11-365
SMSW—Store Machine Status Word . 11-367
STC—Set Carry Flag . 11-369

xiii

TABLE OF CONTENTS

STD—Set Direction Flag . 11-370
STI—Set Interrupt Flag . 11-371
STOS/STOSB/STOSW/STOSD—Store String Data 11-373
STR—Store Task Register . 11-375
SUB—Integer Subtraction . 11-376
TEST—Logical Compare . 11-378
UD2—Undefined Instruction . 11-380
VERR, VERW—Verify a Segment for Reading or Writing 11-381
WAIT/FWAIT—Wait . 11-383
WBINVD—Write-Back and Invalidate Cache . 11-384
WRMSR—Write to Model Specific Register . 11-386
XADD—Exchange and Add . 11-388
XCHG—Exchange Register/Memory with Register 11-390
XLAT/XLATB—Table Look-up Translation . 11-392
XOR—Logical Exclusive OR . 11-394

APPENDIX A
EFLAGS CROSS-REFERENCE

APPENDIX B
EFLAGS CONDITION CODES

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

Figures

Figure Title Page
1-1. Bit and Byte Order . 1-4
2-1. The Processing Units in the Pentium Pro Processor Microarchitecture and

Their Interface with the Memory Subsystem. 2-6
2-2. Functional Block Diagram of the Pentium Pro Processor Microarchitecture. . 2-8
3-1. Pentium Pro Processor Basic Execution Environment 3-2
3-2. Three Memory Management Models . 3-3
3-3. Application Programming Registers . 3-6
3-4. Alternate General-Purpose Register Names . 3-7
3-5. Use of Segment Selectors for Flat Memory Model . 3-8
3-6. Use of Segment Selectors in Segmented Memory Model 3-8
3-7. EFLAGS Register . 3-9
4-1. Procedure Stack Structure . 4-2
4-2. Protection Rings . 4-7
4-3. Stack Switch on a Call to a Different Privilege Level 4-9
4-4. Stack Usage on Calls to Interrupt and Exception Handling Routines 4-12
4-5. Nested Procedures . 4-17
4-6. Stack Frame after Entering the MAIN Procedure . 4-18
4-7. Stack Frame after Entering Procedure A . 4-19
4-8. Stack Frame after Entering Procedure B . 4-20
4-9. Stack Frame after Entering Procedure C . 4-21
5-1. Fundamental Data Types . 5-1
5-2. Bytes, Words, Doublewords and Quadwords in Memory 5-2

TABLE OF CONTENTS

xiv

5-3. Numeric, Pointer, and Bit Field Data Types . 5-3
5-4. Memory Operand Address . 5-6
5-5. Offset (or Effective Address) Computation . 5-8
6-1. Operation of the PUSH Instruction . 6-16
6-2. Operation of the PUSHA Instruction . 6-17
6-3. Operation of the POP Instruction . 6-17
6-4. Operation of the POPA Instruction . 6-18
6-5. Sign Extension . 6-18
6-6. SHL/SAL Instruction Operation. 6-22
6-7. SHR Instruction Operation . 6-23
6-8. SAR Instruction Operation . 6-24
6-9. SHLD and SHRD Instruction Operations . 6-24
6-10. ROL, ROR, RCL, and RCR Instruction Operations 6-25
6-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions . 6-35
7-1. Binary Real Number System . 7-2
7-2. Binary Floating-Point Format . 7-3
7-3. Real Numbers and NaNs . 7-5
7-4. Relationship Between the Integer Unit and the FPU 7-7
7-5. FPU Execution Environment. 7-8
7-6. FPU Data Register Stack . 7-9
7-7. Example FPU Dot Product Computation . 7-10
7-8. FPU Status Word . 7-11
7-9. Moving the FPU Condition Codes to the EFLAGS Register. 7-14
7-10. FPU Control Word . 7-15
7-11. FPU Tag Word . 7-18
7-12. Contents of FPU Opcode Registers . 7-20
7-13. Protected-Mode FPU State Image in Memory, 32-Bit Format 7-20
7-14. Real Mode FPU State Image in Memory, 32-Bit Format 7-21
7-15. Protected-Mode FPU State Image in Memory, 16-Bit Format 7-21
7-16. Real Mode FPU State Image in Memory, 16-Bit Format 7-21
7-17. Floating-Point Unit Data Type Formats . 7-22
8-1. Memory-Mapped I/O. 8-3
8-2. I/O Permission Bit Map . 8-5
11-1. Instruction Format. 11-1
11-2. Bit Offset for BIT[EAX,21] . 11-12
11-3. Memory Bit Indexing . 11-12
11-4. Version and Feature Information in Registers EAX and EDX. 11-74

Tables

Table Title Page
2-1. Overview of the Pentium Pro Processor Features . 2-1
3-1. Effective Operand- and Address-Size Attributes . 3-13
4-1. Exceptions and Interrupts . 4-11
5-1. Default Segment Selection Rules. 5-7
6-1. Move Instruction Operations. 6-13
6-2. Conditional Move Instructions. 6-14
6-3. Bit Test and Modify Instructions . 6-26
6-4. Conditional Jump Instructions. 6-30
6-5. Information Provided by the CPUID Instruction . 6-37
7-1. Real Number Notation . 7-3

xv

TABLE OF CONTENTS

7-2. Denormalization Process . 7-6
7-3. FPU Condition Code Interpretation. 7-12
7-4. Precision Control Field (PC) . 7-16
7-5. Rounding Control Field (RC). 7-16
7-6. Rounding of Positive Numbers . 7-17
7-7. Rounding of Negative Numbers . 7-17
7-8. Length, Precision, and Range of FPU Data Types . 7-23
7-9. Real Number and NaN Encodings . 7-25
7-10. Binary Integer Encodings . 7-26
7-11. Packed Decimal Integer Encodings . 7-27
7-12. Unsupported Extended-Real Encodings. 7-29
7-13. Data Transfer Instructions. 7-30
7-14. Floating-Point Conditional Move Instructions . 7-31
7-15. Setting of FPU Condition Code Flags for

Real Number Comparisons. 7-34
7-16. Setting of EFLAGS Status Flags for Real Number Comparisons 7-34
7-17. TEST Instruction Constants for Conditional Branching. 7-35
7-18. Rules for Generating QNaNs . 7-40
7-19. Arithmetic and Non-Arithmetic Instructions. 7-42
7-20. Invalid Arithmetic Operations and the Masked Responses to Them 7-46
7-21. Divide-By-Zero Conditions and the Masked Responses to Them 7-46
7-22. Masked Responses to Numeric Overflow. 7-48
8-1. I/O Instruction Serialization . 8-7
11-1. 16-Bit Addressing Forms with the ModR/M Byte . 11-4
11-2. 32-Bit Addressing Forms with the ModR/M Byte . 11-5
11-3. 32-Bit Addressing Forms with the SIB Byte . 11-6
11-4. Register Encodings Associates With

the +rb, +rw, and +rd Nomenclature . 11-8
11-5. Exception Mnemonics, Names, and Vector Numbers. 11-13
11-6. Floating-Point Exception Mnemonics and Names 11-14
11-7. Information Returned by CPUID Instruction . 11-73
11-8. Processor Type Field . 11-75
11-9. Feature Flags Returned in EDX Register . 11-75
11-10. Encoding of Cache and TBL Descriptors. 11-77
A-1. EFLAGS Cross-Reference . A-1
B-1. EFLAGS Condition Codes . B-1
C-1. Floating-Point Exceptions Summary. C-1

1-1

CHAPTER 1
ABOUT THIS MANUAL

The Pentium Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual
(Order Number 242691) is part of a three-volume set that describes the architecture, program-
ming environment, and hardware features of the Pentium Pro processor. The other two manuals
in this set are as follows:

• Pentium Pro Family Developer’s Manual, Volume 1: Specifications (Order Number
242690)

• Pentium Pro Family Developer’s Manual, Volume 3: Operating System Writer’s Guide
(Order Number 242692)

The Pentium Pro Family Developer’s Manual, Volume 2 and the Pentium Pro Family Devel-
oper’s Manual, Volume 3 describe the architecture and programming environment of the
processor. The Pentium Pro Family Developer’s Manual, Volume 2 describes the basic program-
ming environment and the instructions set of the processor. It is aimed at application program-
mers who are writing programs to run under existing operating systems or executives. The
Pentium Pro Family Developer’s Manual, Volume 3 describes the operating system support
environment of the processor, including memory management, protection, task management,
interrupt and exception handling, and system management mode. It also describes the opcode
structure and requirements for compiler writers. Both manuals provide Intel Architecture
processor compatibility information.

1.1. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S
MANUAL, VOLUME 2

The contents of this manual are as follows:

Chapter 1 — About the Manual. Gives an overview of this manual and the Pentium Pro
Family Developer’s Manual, Volume 3. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the Intel Pentium Pro Processor. Introduces the Intel Pentium
Pro processor family, gives an overview of the new features found in these processors, and
describes the Pentium Pro processor’s microarchitecture.

Chapter 3 — Program Execution Environment. Introduces the models of memory organiza-
tion and describes the register set used by applications.

Chapter 4 — Basic Calls, Interrupts, and Exceptions. Describes the procedure stack and the
mechanisms provided for making procedure calls and for servicing interrupts and exceptions.

1-2

ABOUT THIS MANUAL

Chapter 5 — Data Types and Addressing Modes. Describes the data types and addressing
modes recognized by the processor.

Chapter 6 — Instruction Set Summary. Gives an overview of all the Pentium Pro processor
instructions except those executed by the processor’s floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 — Floating-Point Unit. Describes the Pentium Pro processor’s floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor's floating-point exception conditions.

Chapter 8 — Input/Output. Describes the processor’s I/O architecture, including I/O port
addressing, the I/O instructions, and the I/O protection mechanism.

Chapter 9 — Processor Identification and Feature Determination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Chapter 10 — Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Intel386™, Intel486™, Pentium, and Pentium Pro processors.

Chapter 11 — Instruction Set Reference. Describes each of the Pentium Pro processor
instructions in detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be generated. The
instructions are arranged in alphabetical order.

Appendix A — EFLAGS Cross-Reference. Summaries how the Pentium Pro processor
instructions affect the flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by floating-point instructions.

1.2. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S
MANUAL, VOLUME 3

The contents of the Pentium Pro Family Developer’s Manual, Volume 3 are as follows:

Chapter 1 — About the Manual. Gives an overview of this manual and the Pentium Pro
Family Developer’s Manual, Volume 2. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of the
Pentium Pro processor and those processor features used to build operating systems and execu-
tives, including the system-oriented registers and data structures and the system-oriented
instructions. The steps necessary for switching between real-address and protected modes are
also identified.

1-3

ABOUT THIS MANUAL

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the Pentium Pro processor’s support for page and segment
protection. This chapter also explains the implementation of privilege rules, stack switching,
pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
of the Pentium Pro processor, shows how interrupts and exceptions relate to protection, and
describes how the processor handles each exception type.

Chapter 6 — Task Management. Describes how the Pentium Pro processor supports multi-
tasking with context-switching operations and inter-task protection.

Chapter 7 — Multiple Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program-
mable interrupt controller (APIC).

Chapter 8 — Processor Management and Initialization. Defines the state of the processor
and floating-point unit after reset initialization. This chapter also explains how to set up the
processor for real-address mode operation and protected mode operation, and how to switch
between modes.

Chapter 9 — System Management Mode (SMM). Describes the Pentium Pro processor’s
implementation of system management mode (SMM), which can be used to implement power
management functions.

Chapter 10 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug features of the Pentium Pro processor. This chapter also describes the time-
stamp counter and the performance monitoring counters.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the
specific mechanisms used by the Pentium Pro processor’s internal caches. This chapter also
describes the memory type range registers (MTRRs) and how they can be used to map memory
types of physical memory.

Chapter 12 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the
Pentium Pro processor.

Chapter 13 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 14 — Code Optimization. Discusses general optimization techniques for program-
ming an Intel Architecture processor.

Chapter 15 — Intel Architecture Compatibility. Describes the differences between 8086, the
Intel 286, Intel386, Intel486, Pentium, and Pentium Pro processors. This chapter covers the
system architecture of the Intel Architecture processors.

Chapter 16 — Machine Check Architecture. Describes the processor’s machine check
architecture.

1-4

ABOUT THIS MANUAL

Appendix A — Opcode Map. Gives an opcode map for the Pentium Pro processor instruction
set.

Appendix B — Performance-Monitoring Counters. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events.

Appendix C — Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
Pro processor and their functions.

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. The Pentium
Pro processor is a “little endian” machine; this means the bytes of a word are numbered starting
from the least significant byte. Figure 1-1 on page 1-4 illustrates these conventions.

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8
4

0 Address

Byte Offset

1-5

ABOUT THIS MANUAL

regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved Pentium Pro
processor register bits. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incom-
patibility with future processors.

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
Pentium Pro processor is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1-6

ABOUT THIS MANUAL

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
address memory. The memory that can be addressed with a byte address is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

1-7

ABOUT THIS MANUAL

See Chapter 5, Interrupt and Exception Handling, in the Pentium Pro Family Developer’s
Manual, Volume 3 for a list of exception mnemonics and their descriptions.

1.4. RELATED LITERATURE

The following books contain additional material related to Intel processors:

• Intel Pentium Pro Processor Specification Update, Order Number 242689.

• AP-485, Intel Processor Identification with the CPUID Instruction, Order Number
241618.

• Pentium Processor Data Book, Order Number 241428.

• 82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium
Processor, Order Number 241429.

• Intel486 Microprocessor Data Book, Order Number 240440.

• Intel486 Processor Hardware Reference Manual, Order Number 240552.

• Intel486 DX Processor Programmer’s Reference Manual, Order Number 240486.

• Intel486 SX CPU/Intel487™ SX Math CoProcessor Data Book, Order Number 240950.

• Intel486 DX2 Microprocessor Data Book, Order Number 241245.

• Intel486 Microprocessor Product Brief Book, Order Number 240459.

• Intel386 Processor Hardware Reference Manual, Order Number 231732.

• Intel386 DX Processor Programmer’s Reference Manual, Order Number 230985.

• Intel386 SX Processor Programmer's Reference Manual, Order Number 240331.

• Intel386 Processor System Software Writer's Guide, Order Number 231499.

• Intel386 High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630.

• 376 Embedded Processor Programmer's Reference Manual, Order Number 240314.

• 80387 DX User's Manual Programmer's Reference, Order Number 231917.

• 376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

• Intel386 SX Microprocessor, Order Number 240187.

• Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843.

• AP-485, Intel Processor Identification with the CPUID Instruction, Order Number
241618.

• AP-500, Optimizations for Intel's 32-Bit Processors, Order number 241799.

2-1

CHAPTER 2
INTRODUCTION TO THE INTEL

PENTIUM PRO PROCESSOR

The Intel Pentium Pro processor is the first of a new family of Intel Architecture processors.
While fully software compatible with earlier Intel Architecture processors, it offers several
important new architectural and model-specific features. It also provides significant advances in
processing speed. The Pentium Pro processor running at a 150 MHz clock rate executes industry
standard benchmark programs more than twice as fast as the Intel Pentium processor running at
100 MHz. Table 2-1 on page 2-1 provides an overview of the Pentium Pro processor’s features.

The new features found in the Pentium Pro processor can be divided into three categories: new
architectural features, new model-specific features, and advances in the microarchitecture.
These features are described in the following sections.

2.1. NEW ARCHITECTURAL FEATURES

The new features that the Pentium Pro processor adds to the Intel Architecture include several
new and extended instructions and new memory management capabilities. Several model-
specific features have also been added to the Pentium Pro processor. The following sections
describe these new features.

Table 2-1. Overview of the Pentium Pro Proc essor Features

Feature Description

Number of Transistors 5.5 Million in CPU core.

Clock Rate First processors, 150 MHz and 166 MHz; up to 200 MHz in the future.

Compatibility with Earlier Intel
Architecture Processors

Fully compatible.

Microarchitecture Three-way superscalar; five parallel execution units (two integer, two
FPU, and one memory interface); dynamic execution.

Caches Level 1 (L1) cache: 8-KByte, four-way set-associative, primary
instruction cache; 8-KByte, dual-ported, two-way set-associative,
primary data cache; both located on the CPU die.
Level 2 (L2) cache: 256-KByte (static RAM) secondary cache; located
on a separate die and closely coupled to the CPU die by means of a
dedicated full clock-speed bus.

Process Technology Four-layer metal BiCMOS; 0.6 microns; 2.9 Volts.

Package Design and Die Size Package: Dual cavity PGA ceramic package; 387 pins.
CPU die size: 306 millimeter square
L2 Cache SRAM die size: 202 millimeter square

Power consumption 23 watts typical at 150 MHz clock rate.

2-2

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

2.1.1. New and Extended Instructions

The following instructions are new in the Pentium Pro processor:

• CMOVcc (conditional move) instructions—Checks the state of the status flags in the
EFLAGS registers and performs a move operation if the specified condition (state of the
flags) is true. These instructions can be used to move a value from a memory location or
general-purpose register to another register. They are provided to improve branch
prediction performance. (See “CMOVcc—Conditional Move” on page 11-60).

• FCMOVcc (floating-point conditional move) instructions—Check the state of the status
flags in the EFLAGS registers and perform a floating-point move operation if the specified
condition is true. These instructions move the contents of a specified floating-point register
[ST(i)] to the top of the register stack [ST(0)]. (see “FCMOVcc—Floating-Point
Conditional Move” on page 11-106).

• FCOMI (floating-point compare and set EFLAGS) instructions—Compare the values in
two floating-point registers and set the status flags in the EFLAGS register according to
the results. (See “FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS” on page 11-111).

• RDPMC (read performance monitoring counters) instruction—Reads the contents of the
specified performance monitoring counter. This instruction is associated with a new flag in
control register CR4, bit 8. This flag, called the PCE (performance counter enable) flag,
permits programs or procedures running at protection levels 1, 2, or 3 to execute the
RDPMC instruction, which can normally only be executed only at privilege level 0. (See
“RDPMC—Read Performance-Monitoring Counters” on page 11-330).

• UD2 (undefined) instruction—Generates an invalid opcode exception. This instruction is a
no-op instruction provided for testing invalid-opcode exception handlers. (See
“UD2—Undefined Instruction” on page 11-380).

In addition to these new instructions, the functions of the CPUID, RDMSR, and WRMSR
instructions have been extended. The CPUID (CPU identification) instruction now indicates the
existence of additional model-specific features and displays cache information (see
“CPUID—CPU Identification” on page 11-73).

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions now recognize a much larger number of model-specific registers. (See
“RDMSR—Read from Model Specific Register” on page 11-328 and “WRMSR—Write to
Model Specific Register” on page 11-386 for more information about these instructions.

2.1.2. New Memory Management Features

The Pentium Pro processor provides three new memory management features: physical memory
addressing extension, the global bit in page table entries, and general support for larger page
sizes. These features are only available when operating in protected mode.

2-3

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

The new PAE (physical address extension) flag in control register CR4, bit 5, enables four addi-
tional address lines on the processor, allowing 36-bit physical addresses. This option can only
be used when paging is enabled, using an advance page-table mechanism provided to support
the larger physical address range.

The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for
preventing frequently used pages from being flushed from the translation lookaside buffer
(TLB). When this flag is set, frequently used pages (such as pages containing kernel procedures
or common data tables) can be marked global by setting the global flag in a page-table-directory
or page-table entry. On a task switch or a write to control register CR3 (which normally causes
the TLBs to be flushed), the entries in the TLB marked global will normally not be flushed.
Marking pages global in this manner provides software with a mechanism for controlling unnec-
essary reloading of the TLB due to TLB misses on frequently used pages.

One of the new features available in the Pentium Pro processor is support for large page sizes.
This support is enabled with the PSE (page size extension) flag in control register CR4, bit 4.
When this flag is set, the processor supports 4-KByte and 4-MByte page sizes when normal
paging is used and 4-KByte and 2-MByte page sizes when the physical address extension is
used.

See Chapter 3, Protected-Mode Memory Management, in the Pentium Pro Family Developer’s
Manual, Volume 3 for more information about the physical memory addressing extension,
global pages, and large page sizes.

2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES

The Pentium Pro processor provides several model-specific features that are either new to Intel
Architecture processors or extensions of existing features. Model-specific features appear in
some Intel Architecture processors, but are not part of the Intel Architecture; that is, they are not
guaranteed to be implemented in the same manner in future Intel Architecture processors. The
new and extended model-specific features found in the Pentium Pro processor include more
model specific registers, new memory type range registers (MTRRs), extensions to the machine
check architecture, and new performance monitoring counters.

2.2.1. Model-Specific Registers

The concept of model-specific registers (MSRs) to control hardware functions in the processor
or to monitor processor activity was introduced in the Pentium processor. The number of MSRs
is greatly increased in the Pentium Pro processor. The new registers control the debug exten-
sions, the performance counters, the machine-check exception capability, the machine check
architecture, and the MTRRs. The MSRs can be read and written to using the RDMSR and
WRMSR instructions, respectively.

See Chapter 8, Processor Management and Initialization, and Appendix C, Model-Specific
Registers (MSRs), in the Pentium Pro Family Developer’s Manual, Volume 3 for more informa-
tion on the MSRs.

2-4

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

2.2.2. Memory Type Range Registers

Memory type range registers (MTRRs) are a new feature introduced in the Pentium Pro
processor that allow the processor to optimize memory operations for different types of memory,
such as RAM, ROM, frame buffer memory, and memory-mapped I/O.

MTRRs are MSRs that configure an internal map of how physical address ranges are mapped to
various types of memory. The processor uses this internal memory map to determine the cache-
ability of various physical memory locations and the optimal method of accessing memory loca-
tions. For example, if a memory location is specified in an MTRR as write-through memory, the
processor handles accesses to this location as follows. It reads data from that location in lines
and caches the read data or maps all writes to that location to the bus and updates the cache to
maintain cache coherency. In mapping the physical address space with MTRRs, the processor
recognizes five types of memory: uncacheable (UC), write-combining (WC), write-through
(WT), write-protected (WP), and writeback (WB).

Earlier Intel Architecture processors (such as the Intel486 and the Pentium processor) used the
#KEN (cache enable) pin and external logic to maintain an external memory map and signal
cacheable accesses to the processor. The MTRR mechanism simplifies hardware designs by
eliminating the #KEN pin and the external logic required to drive it.

See Chapter 8, Processor Management and Initialization, and Appendix C, Model-Specific
Registers (MSRs), in the Pentium Pro Family Developer’s Manual, Volume 3 for more informa-
tion on the MTRRs.

2.2.3. Machine-Check Exception and Architecture

The Pentium processor introduced a new exception called the machine-check exception (inter-
rupt 18). This exception is used to signal hardware-related errors, such as a parity error on a read
cycle. The Pentium Pro processor extends the types of errors that can be detected and that
generate a machine-check exception. It also provides a new machine-check architecture that
records information about a machine-check error and provides the basis for an extended error
logging capability.

The machine-check architecture provides several banks of reporting registers for recording
machine-check errors. Each bank of registers is associated with a specific hardware unit in the
processor. The primary focus of the machine checks is on bus and interconnect operations;
however, checks are also made of translation lookaside buffer (TLB) and cache integrity.

The machine-check architecture can correct some errors automatically and allow for reliable
restart of instruction execution. It also collects sufficient information for software to use in
logging other machine errors not corrected by hardware.

See Chapter 5, Interrupt and Exception Handling, and Chapter 16, Machine Check Architecture,
in the Pentium Pro Family Developer’s Manual, Volume 3 for more information on the machine-
check exception and the machine-check architecture.

2-5

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

2.2.4. Performance Monitoring Counters

The Pentium Pro processor has two performance-monitoring counters for use in monitoring
internal hardware operations. These counters are duration or event counters that can be
programmed to count any of approximately 100 different types of events, such as the number of
instructions decoded, number of interrupts received, or number of cache loads. Appendix C,
Model-Specific Registers (MSRs), in the Pentium Pro Family Developer’s Manual, Volume 3
lists all the events that can be counted. The counters are set up, started, and stopped using two
MSRs and the RDMSR and WRMSR instructions. The current count for a particular counter can
be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code,
diagnosing system failures, or refining hardware designs. See Chapter 10, Debugging and
Performance Monitoring, in the Pentium Pro Family Developer’s Manual, Volume 3 for more
information on these counters.

2.3. INTRODUCTION TO THE PENTIUM PRO PROCESSOR’S
ADVANCED MICROARCHITECTURE

The Pentium processor (introduced by Intel in 1993) set an impressive performance standard
with its superscalar microarchitecture. In designing the Pentium Pro processor, one of the
primary goals of the Intel chip architects was to exceed the performance of the 100-MHz
Pentium processor significantly while still using the same 0.6-micrometer, four-layer, metal
BICMOS manufacturing process. Using the same manufacturing process as the Pentium
processor meant that performance gains could only be achieved through substantial advances in
the microarchitecture.

The resulting Pentium Pro processor microarchitecture is a three-way superscalar, pipelined
architecture. The term “three-way superscalar” means that using parallel processing techniques,
the processor is able on average to decode, dispatch, and complete execution of (retire) three
instructions per clock cycle. To handle this level of instruction throughput, the Pentium Pro
processor uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execu-
tion. Figure 2-1 on page 2-6 shows a conceptual view of this pipeline, with the pipeline divided
into four processing units (the fetch/decode unit, the dispatch/execute unit, the retire unit, and
the instruction pool). Instructions and data are supplied to these units through the bus interface
unit.

To insure a steady supply of instructions and data to the instruction execution pipeline, the
Pentium Pro processor microarchitecture incorporates two cache levels. The L1 cache provides
an 8-KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline.
The L2 cache is a 256-KByte static RAM that is coupled to the core processor through a full
clock-speed, 64-bit, cache bus.

2-6

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

The centerpiece of the Pentium Pro processor microarchitecture is an innovative out-of-order
execution mechanism called “dynamic execution.” Dynamic execution incorporates three data-
processing concepts:

• Deep branch prediction.

• Dynamic data flow analysis.

• Speculative execution.

Branch prediction is a concept found in most mainframe and high-speed microprocessor archi-
tectures. It allows the processor to decode instructions beyond branches to keep the instruction
pipeline full. In the Pentium Pro processor, the instruction fetch/decode unit uses a highly opti-
mized branch prediction algorithm to predict the direction of the instruction stream through
multiple levels of branches, procedure calls, and returns.

Dynamic data flow analysis involves real-time analysis of the flow of data through the processor
to determine data and register dependencies and to detect opportunities for out-of-order instruc-
tion execution. The Pentium Pro dispatch/execute unit can simultaneously monitor many
instructions and execute these instructions in the order that optimizes the use of the processor’s

Figure 2-1. The Processing Units in the Pentium Pro Processor Microarchitecture and
Their Interface with the Memory Subsystem

Architecture

Cache Bus

Fetch/Decode
Unit

Dispatch/
Execute Unit Retire Unit

Registers

Intel

Dispatch/
Execute Unit

L1 Instruction
Cache L1 Data Cache

Fetch Load Store

Bus Interface Unit

L2 Cache
System Bus

2-7

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

multiple execution units, while maintaining the integrity of the data being operated on. This out-
of-order execution keeps the execution units even when cache misses and data dependencies
among instructions occur.

Speculative execution refers to the processor’s ability to execute instructions ahead of the
program counter but ultimately to commit the results in the order of the original instruction
stream. To make speculative execution possible, the Pentium Pro processor microarchitecture
decouples the dispatching and executing of instructions from the commitment of results. The
processor’s dispatch/execute unit uses data-flow analysis to execute all available instructions in
the instruction pool and store the results in temporary registers. The retirement unit then linearly
searches the instruction pool for completed instructions that no longer have data dependencies
with other instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory and/or the Intel
Architecture registers (the processor’s eight general-purpose registers and eight floating-point
unit data registers) in the order they were originally issued and retires the instructions from the
instruction pool.

Through deep branch prediction, dynamic data-flow analysis, and speculative execution,
dynamic execution removes the constraint of linear instruction sequencing between the tradi-
tional fetch and execute phases of instruction execution. It allows instructions to be decoded
deep into multi-level branches to keep the instruction pipeline full. It promotes out-of-order
instruction execution to keep the processor’s six instruction execution units running at full
capacity. And finally it commits the results of executed instructions in original program order to
maintain data integrity and program coherency.

The following section describes the Pentium Pro processor microarchitecture in greater detail.

2.4. DETAILED DESCRIPTION OF THE PENTIUM PRO
PROCESSOR MICROARCHITECTURE

Figure 2-2 on page 2-8 shows a functional block diagram of the Pentium Pro processor microar-
chitecture. In this diagram, the following blocks make up the four processing units and the
memory subsystem shown in Figure 2-1 on page 2-6:

• Memory subsystem—System bus, L2 cache, bus interface unit, instruction cache (L1),
data cache unit (L1), memory interface unit, and memory reorder buffer.

• Fetch/decode unit—Instruction fetch unit, branch target buffer, instruction decoder,
microcode sequencer, and register alias table.

• Instruction pool—Reorder buffer

• Dispatch/execute unit—Reservation station, two integer units, two floating-point units,
and two address generation units.

• Retire unit—Retire unit and retirement register file.

2-8

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

2.4.1. Memory Subsystem

The memory subsystem for the Pentium Pro processor consists of main system memory, the
primary cache (L1), and the secondary cache (L2). The bus interface unit accesses system
memory through the external system bus. This 64-bit bus is a transaction-oriented bus, meaning
that each bus access is handled as separate request and response operations. While the bus inter-
face unit is waiting for a response to one bus request, it can issue numerous additional requests.

Figure 2-2. Functional Block Diagram of the Pentium Pro Pro cessor Microarchitecture

Branch

Next IP

Microcode
Instruction
Sequencer

Simple
Instruction
Decoder

Register Alias Table

Instruction Decoder

Instruction Cache (L1)Instruction Fetch Unit

Bus Interface Unit

Reorder Buffer (Instruction Pool)

Internal Data-Results Buses

Integer
Unit

Integer
Unit

Floating-

(FPU)
Point Unit

Memory
Interface

Unit

Memory
Reorder
Buffer

Data Cache
Unit (L1)

L2 Cache
System Bus (External)

Retirement Unit
Retirement

Register File
(Intel Arch.
Registers)

Cache Bus

Target
Buffer

Unit

To Branch
Target Buffer

From
Integer

Unit

Floating-

(FPU)
Point Unit

Simple
Instruction
Decoder

Complex
Instruction
Decoder

Reservation Station

2-9

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

The bus interface unit accesses the close-coupled L2 cache through a 64-bit cache bus. This bus
is also transactional oriented, supporting up to four concurrent cache accesses, and operates at
the full clock speed of the processor.

Access to the L1 caches is through internal buses, also at full clock speed. The 8-KByte L1
instruction cache is four-way set associative; the 8-KByte L1 data cache is dual-ported and two-
way set associative, supporting one load and one store operation per cycle.

Coherency between the caches and system memory are maintained using the MESI (modified,
exclusive, shared, invalid) cache protocol. This protocol fosters cache coherency in single- and
multiple-processor systems. It is also able to detect coherency problems created by self-modi-
fying code.

Memory requests from the processor’s execution units go through the memory interface unit and
the memory order buffer. These units have been designed to support a smooth flow of memory
access requests through the cache and system memory hierarchy to prevent memory access
blocking. The L1 data cache automatically forwards a cache miss on to the L2 cache, and then,
if necessary, the bus interface unit forwards an L2 cache miss to system memory.

Memory requests to the L2 cache or system memory go through the memory order buffer, which
functions as a scheduling and dispatch station. This unit keeps track of all memory requests and
is able to reorder some requests to prevent blocks and improve throughput. For example, the
memory reorder buffer allows loads to pass stores. It also issues speculative loads. (Stores are
always dispatched in order, and speculative stores are never issued.)

2.4.2. The Fetch/Decode Unit

The fetch/decode unit reads a stream of Intel Architecture instructions from the L1 instruction
cache and decodes them into a series of micro-operations called “micro-ops.” This micro-op
stream (still in the order of the original instruction stream) is then sent to the instruction pool.

The instruction fetch unit fetches one 32-byte cache line per clock from the instruction cache. It
marks the beginning and end of the Intel Architecture instructions in the cache lines and trans-
mits 16 aligned bytes to the decoder.

The instruction fetch unit computes the instruction pointer, based on inputs from the branch
target buffer, the exception/interrupt status, and branch-misprediction indications from the
integer execution units. The most important part of this process is the branch prediction
performed by the branch target buffer. Using an extension of Yeh’s algorithm, the 512 entry
branch target buffer looks many instructions ahead of the retirement program counter. Within
this instruction window there may be numerous branches, procedure calls, and returns that must
be correctly predicted if the dispatch/execute unit is to do useful work.

The instruction decoder contains three parallel decoders: two simple-instruction decoders and
one complex instruction decoder. Each decoder converts an Intel Architecture instruction into
one or more triadic micro-ops (two logical sources and one logical destination per micro-op).
Micro-ops are primitive instructions that are executed by the processor’s six parallel execution
units.

2-10

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

Many Intel Architecture instructions are converted directly into single micro-ops by the simple
instruction decoders, and some instructions are decoded into from one to four micro-ops. The
more complex Intel Architecture instructions are decoded into sequences of preprogrammed
micro-ops obtained from the microcode instruction sequencer. The instruction decoders also
handle the decoding of instruction prefixes and looping operations. The instruction decoder can
generate up to six micro-ops per clock cycle (one each for the simple instruction decoders and
four for the complex instruction decoder).

The Intel Architecture’s register set can cause resource stalls due to register dependencies. To
solve this problem, the processor provides 40 internal, general-purpose registers, which are used
for the actual computations. These registers can handle both integer and floating-point values.
To allocate the internal registers, the enqueued micro-ops from the instruction decoder are sent
to the register alias table unit, where references to the logical Intel Architecture registers are
converted into internal physical register references.

In the final step of the decoding process, the allocator in the resister alias table unit adds status
bits and flags to the micro-ops to prepare them for out-of-order execution and sends the resulting
micro-ops to the instruction pool.

2.4.3. Instruction Pool (Reorder Buffer)

Prior to entering the instruction pool (known formally as the reorder buffer), the micro-op
instruction stream is in the same order as the Intel Architecture instruction stream that was sent
to the instruction decoder. No reordering of instructions has taken place.

The reorder buffer is an array of content-addressable memory, arranged into 40 micro-op regis-
ters. It contains micro-ops that are waiting to be executed, as well as those that have already been
executed but not yet committed to machine state. The dispatch/execute unit can execute instruc-
tions from the reorder buffer in any order.

2.4.4. Dispatch/Execute Unit

The dispatch/execute unit is an out-of-order unit that schedules and executes the micro-ops
stored in the reorder buffer according to data dependencies and resource availability and tempo-
rarily stores the results of these speculative executions.

The scheduling and dispatching of micro-ops from the reorder buffer is handled by the reserva-
tion station. It continuously scans the reorder buffer for micro-ops that are ready to be executed
(that is, all the source operands are available) and dispatches them to the available execution
units. The results of a micro-op execution are returned to the reorder buffer and stored along
with the micro-op until it is retired. This scheduling and dispatching process supports classic
out-of-order execution, where micro-ops are dispatched to the execution units strictly according
to data-flow constraints and execution resource availability, without regard to the original
ordering of the instructions. When two or more micro-ops of the same type (for example, integer
operations) are available at the same time, they are executed in a pseudo FIFO order in the
reorder buffer.

2-11

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

Execution of micro-ops is handled by two integer units, two floating-point units, and one
memory-interface unit, allowing up to five micro-ops can be scheduled per clock.

The two integer units can handle two integer micro-ops in parallel. One of the integer units is
designed to handle branch micro-ops. This unit has the ability to detect branch mispredictions
and signal the branch target buffer to restart the pipeline. This operation is handled as follows.
The instruction decoder tags each branch micro-op with both branch destination addresses (the
predicted destination and the fall-through destination). When the integer unit executes the
branch micro-op, it is able to determine whether the predicted or the fall-through destination was
taken. If the predicted branch is taken, then speculatively executed micro-ops are marked usable
and execution continues along the predicted instruction path. If the predicted branch was not
taken, a jump execution unit in the integer unit changes the status of all of the micro-ops
following the branch to remove them from the instruction pool. It then provides the proper
branch destination to the branch target buffer, which in turn restarts the pipeline from the new
target address.

The memory interface unit handles load and store micro-ops. A load access only needs to
specify the memory address, so it can be encoded in one micro-op. A store access needs to
specify both an address and the data to be written, so it is encoded in two micro-ops. The part of
the memory interface unit that handles stores has two ports allowing it to process the address
and the data micro-op in parallel. The memory interface unit can thus execute both a load and a
store in parallel in one clock cycle.

The floating-point execution units are similar to those found in the Pentium processor. Several
new floating-point instructions have been added to the Pentium Pro processor to streamline
conditional branches and moves.

2.4.5. Retirement Unit

The retirement unit commits the results of speculatively executed micro-ops to permanent
machine state and removes the micro-ops from the reorder buffer. Like the reservation station,
the retirement unit continuously checks the status of micro-ops in the reorder buffer, looking for
ones that have been executed and no longer have any dependencies with other micro-ops in the
instruction pool. It then retires completed micro-ops in their original program order, taking into
accounts interrupts, exceptions, breakpoints, and branch mispredictions.

The retirement unit can retire three micro-ops per clock. In retiring a micro-op, it writes the
results to the retirement register file and/or memory. The retirement register file contains the
Intel Architecture registers (eight general-purpose registers and eight floating-point data regis-
ters). After the results have been committed to machine state, the micro-op is removed from the
reorder buffer.

3-1

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of the Pentium Pro processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

The execution environment for the floating-point unit (FPU) is described in Chapter 7, Floating-
Point Unit.

3.1. MODES OF OPERATION

The Pentium Pro processor has three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

• Protected mode. This is the native state of the processor. In this mode all instructions and
architectural features are available, providing the highest performance and capability. This
is the recommended mode for all new applications and operating systems.

Among the capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

• Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode). The processor is placed in real-address mode following
power-up or a reset. From real-address mode, only a single instruction is required to switch
to protected mode.

• System management mode. The system management mode (SMM) is a standard archi-
tectural feature unique to all Intel processors, beginning with the Intel386 SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing platform-specific functions such as power management. The processor
enters SMM the external SMM interrupt pin (SMI#) is activated or an SMI is received
from the advanced programmable interrupt controller (APIC). In SMM, the processor
switches to a separate address space while saving the entire context of the currently
running program or task. SMM-specific code may then be executed transparently. Upon
returning from SMM, the processor is placed back into its state prior to the system
management interrupt.

The basic execution environment is the same for each of these operating modes, as is described
in the remaining sections of this chapter.

3-2

BASIC EXECUTION ENVIRONMENT

3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on a Pentium Pro processor is given a set of resources for
executing instructions and for storing code, data, and state information. These resources (shown
in Figure 3-1 on page 3-2) include an address space of up to 232 bytes, a set of general data regis-
ters, a set of segment registers, and a set of status and control registers. When a program calls a
procedure, a procedure stack is added to the execution environment. (Procedure calls and the
procedure stack implementation are described in Chapter 4, Procedure Calls, Interrupts, and
Exceptions.)

3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical memory
is organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a phys-
ical address. The physical address space ranges from zero to a maximum of 232 – 1 (4 gigabytes).

Virtually any operating system or executive designed to work with the Pentium Pro processor
will use the processor’s memory management facilities to access memory. These facilities
provide features such as segmentation and paging, which allow memory to be managed effi-
ciently and reliably. Memory management is described in detail in Chapter 3, Protected-Mode
Memory Management, of the Pentium Pro Family Developer’s Manual, Volume 3. The
following paragraphs describe the basic methods of addressing memory when memory manage-
ment is used.

When employing the processor’s memory management facilities, programs do not directly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

Figure 3-1. Pentium Pro Pr ocessor Basic Execution Environment

0

232 −1

Eight 32-bit

32-bits

32-bits

General-Purpose
Registers

Segment Registers

EFLAGS Register

EIP (Instruction
Pointer Register)

Space*
Address

*The address space can be flat or segmented.

Six 16-bit
Registers

Registers

3-3

BASIC EXECUTION ENVIRONMENT

With the flat memory model (see Figure 3-2 on page 3-3), memory appears to a program as a
single, continuous address space, called a linear address space. Code (a program’s instructions),
data, and the procedure stack are all contained in this address space. The linear address space is
byte addressable, with addresses running contiguously from 0 to 232

 - 1. An address for any byte
in the linear address space is called a linear address.

With the segmented memory mode, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue a logical
address, which consists of a segment selector and an offset. (A logical address is often referred
to as a far pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on a Pentium Pro
processor can address up to 16,383 segments of different sizes and types.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. So, the processor translates each logical address into a linear address to access a
memory location. This translation is transparent to the application program.

Figure 3-2. Three Memory Management Models

Linear Address

Flat Model

Linear
Address

Space

Segment Selector

Offset

Segment Selector

Segmented Model

Real-Address Mode Model

Linear Address

Logical

Offset

Space Divided
Into Equal

Sized Segments

Address

Logical
Address

Linear
Address

Space

Segments

3-4

BASIC EXECUTION ENVIRONMENT

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. And
placing the operating system’s or executive’s code, data, and stack in separate segments protects
them from the application program and vice versa.

The real-address mode model, uses the memory model for the Intel 8086 processor. It is
provided in the Pentium Pro processor for compatibility with existing programs written to run
on the Intel 8086. The real-address mode uses a specific implementation of segmented memory
in which the linear address space for the program and the operating system/executive consists
of an array of equally sized segments. (See Chapter 12, 8086 Emulation, in the Pentium Pro
Family Developer’s Manual, Volume 3 for more information on this memory model.)

3.4. MODES OF OPERATION

When writing code for the Pentium Pro processor, a programmer needs to know the operating
mode the processor is going to be in when executing the code and the memory model being used.
The relationship between operating modes and memory models is as follows:

• Protected mode. When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mode memory model is ordinarily
used only when the processor is in the virtual-8086 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple-
mented, individual tasks can use different memory models.

• Real-address mode. When in real-address mode, the processor only supports the real-
address mode memory model.

• System management mode. When in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
9, System Management Mode (SMM), in the Pentium Pro Family Developer’s Manual,
Volume 3 for more information on the memory model used in SMM.)

3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232),
and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes, the
maximum linear address or segment offset is FFFFH (216), and operand sizes are typically 8 bits
or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

3-5

BASIC EXECUTION ENVIRONMENT

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler then sets up the segment
descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32 bit addressing; however, the
maximum allowable 32-bit address is still 0000FFFFH (216).

3.6. REGISTERS

The processor provides 16 registers for use in general system and application programing. As
shown in Figure 3-3 on page 3-6, these registers can be grouped as follows:

• General-purpose data registers. These eight registers are available for storing operands
and pointers.

• Segment registers. These registers hold up to six segment selectors.

• Status and control registers. These registers report and allow modification of the state of
the processor and of the program being executed.

3.6.1. General-Purpose Data Registers

The 32-bit general-purpose data registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers.

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment.

The special uses of general-purpose registers by instructions are described in Chapter 6, Instruc-
tion Set Summary and Chapter 11, Instruction Set Reference. The following is a summary of
these special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

3-6

BASIC EXECUTION ENVIRONMENT

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4 on page 3-7, the lower 16 bits of the general-purpose registers map
directly to the register set found in the 8086 and Intel 286 processors and can be referenced with
the names AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX,
ECX, and EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and
AL, BL, CL, and DL (low bytes).

Figure 3-3. Application Programming Registers

031

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

Segment Registers

CS

DS
SS

ES

FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Status and Control Registers

3-7

BASIC EXECUTION ENVIRONMENT

3.6.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
registers.

When writing application code, you generally create segment selectors with assembler direc-
tives and symbols. The assembler and/or linker then creates the actual segment selectors asso-
ciated with these directives and symbols. If you are writing system code, you may need to create
segment selectors directly. (A detailed description of the segment-selector data structure is given
in Chapter 3, Protected-Mode Memory Management, of the Pentium Pro Family Developer’s
Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, all
the segment registers are loaded with the same segment selector (as shown in Figure 3-5 on page
3-8). Thus all memory accesses that a program makes are to a single linear-address space.

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment (as shown
in Figure 3-6 on page 3-8). At any time, a program can thus access up to six segments of
memory. To access a segment not pointed to by one of the segment registers, a program must
first load the segment selector for the segment to be accessed into a segment register.

Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contains the segment selector for the code segment, where
the instructions being executed are stored. The processor fetches instructions from the code
segment, using a logical address made up of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the linear address within the code segment
of the next instruction to be executed. The CS register cannot be loaded explicitly by an appli-
cation program. Instead it is loaded implicitly by instructions or internal processor operations
that change program control (such as, procedure calls, interrupt handling, or task switching).

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

3-8

BASIC EXECUTION ENVIRONMENT

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example,
separate data segments can be created for the data structures of the current module, data
exported from a higher-level module, a dynamically-created data structure, and data shared with
another program. To access additional data segments, the application program must load
segment selectors for these segments into the DS, ES, FS, and GS registers, as needed.

Figure 3-5. Use of Segment Selectors for Flat Memory Model

Figure 3-6. Use of Segment Selectors in Segmented Memory Model

Segment Registers

CS

SS
DS

ES
FS
GS

015

Linear Address
Space for Program

Each segment register
contains the same
segment selector.

Segment Registers

CS
DS
SS
ES
FS
GS

015

Code
Segment

Data
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

3-9

BASIC EXECUTION ENVIRONMENT

The SS register contains the segment selector for a stack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded
explicitly, which permits application programs to set up multiple stacks and switch among them.

See “Modes of Operation” on page 3-1 for an overview of how the segment registers are used
in the virtual 8086 mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the
Intel Architecture with the Intel386 family of processors.

3.6.3. EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 on page 3-9 defines the flags within this register. Following initializa-
tion of the processor (either by asserting the RESET pin or the INIT pin), the state of the
EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved.
Software should not use or depend on the states of any of these bits.

Figure 3-7. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual 8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
X Overflow Flag (OF)
X Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

3-10

BASIC EXECUTION ENVIRONMENT

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EAX register, the flags can be examined and modified using
the processor’s bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automati-
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception
is handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.

As the Intel Architecture has evolved, various flags have been added to the EFLAGS register,
but the arrangement of flags in the register has remained the same. As a result, all actions
regarding these flags in software written for the Intel Architecture should work as expected.

3.6.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a bor-
row out of the most-significant bit of the result; cleared otherwise.
This flag indicates an overflow condition for unsigned-integer arith-
metic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an
even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a bor-
row out of bit 3 of the result; cleared otherwise. This flag is used in
binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is
the sign bit of a signed integer. (0 indicates a positive value and 1 in-
dicates a negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number
or too small a negative number (excluding the sign-bit) to fit in the
destination operand; cleared otherwise. This flag indicates an over-
flow condition for signed-integer (two’s complement) arithmetic.

3-11

BASIC EXECUTION ENVIRONMENT

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on unsigned integers, the CF flag is used in
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instructions to prop-
agate a carry or borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

3.6.3.2. DF FLAG

The direction flag (DF) is the only control flag in the EFLAGS register. This flag (bit 10 of the
register) controls the string instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the
DF flag causes the string instructions to auto-decrement (that is, to process strings from high
addresses to low addresses). Clearing the DF flag causes the string instructions to auto-incre-
ment (process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.6.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the status
flags are as follows:

IF (bit 9) Interrupt enable flag. Controls the response of the processor to
maskable interrupt requests. Set to respond to maskable interrupts;
cleared to inhibit maskable interrupts.

TF (bit 8) Trap flag. Set to enable single-step mode for debugging; clear to dis-
able single-step mode.

IOPL (bits 12 and 13) I/O privilege level field. Indicates the I/O privilege level of the cur-
rently running program or task. The current privilege level (CPL) of
the currently running program or task must be less than or equal to
the I/O privilege level to access the I/O address space. This field can
only be modified by the POPF and IRET instructions when operating
at a CPL of 0.

3-12

BASIC EXECUTION ENVIRONMENT

NT (bit 14) Nested task flag. Controls the chaining of interrupted and called
tasks. Set when the current task is linked to the previously executed
task; cleared when the current task is not linked to another task.

RF (bit 16) Resume flag. Controls the processor’s response to debug excep-
tions.

VM (bit 17) Virtual 8086 mode flag. Set to enable virtual-8086 mode; clear to
return to protected mode.

AC (bit 18) Alignment check flag. Set this flag and the AM bit in the CR0 reg-
ister to enable alignment checking of memory references; clear the
AC flag and/or the AM bit to disable alignment checking.

VIF (bit 19) Virtual interrupt flag. Virtual image of the IF flag. Used in con-
junction with the VIP flag. (To use this flag and the VIP flag the vir-
tual mode extensions are enabled by setting the VME flag in control
register CR4.)

VIP (bit 20) Virtual interrupt pending flag. Set to indicate to that an interrupt
is pending; clear when no interrupts are pending. (Software sets and
clears this flag. The processor only reads it.) Used in conjunction
with the VIF flag.

ID (bit 21) Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the Pentium Pro Family Developer’s
Manual, Volume 3 for a detail description of these flags.

3.7. INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jcc, CALL, RET, and IRET instructions. The EIP cannot be accessed directly by software; it is
controlled implicitly by control-transfer instructions (such as JMP, Jcc, CALL, and RET), inter-
rupts, and exceptions. The EIP register can be loaded indirectly by modifying the value of a
return instruction pointer on the procedure stack and executing a return instruction (RET or
IRET). See “Return Instruction Pointer” on page 4-4.

Because of instruction prefetching, an instruction address read from the bus during an instruc-
tion load does not match the value of the EIP. The only way to read the EIP is to execute a CALL
instruction and then read the value of the return instruction pointer from the procedure stack.

The EIP register is fully compatible with all software written to run on Intel Architecture
processors.

3-13

BASIC EXECUTION ENVIRONMENT

3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When processor is executing in protected mode, every code segment has a default operand-size
attribute and address-size attribute. These attributes are selected with the D (default size) flag in
the segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory Manage-
ment, in the Pentium Pro Family Developer’s Manual, Volume 3. When the B flag is set, the
32Hbit operand-size and address-size attributes are selected; when the flag is clear, the 16-bit
size attributes are selected. When the processor is executing in real-address mode, virtual-8086
mode, or SMM, the default operand-size and address-size attributes are always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32
bits. When the 16-bit address-size attribute is in force, segment offsets and displacements are
16-bits. This restriction limits the size of a segment that can be addressed 64 KBytes. When the
32-bit address-size attribute is in force, segment offsets and displacements are 32-bits, allowing
segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular
instruction by adding an operand-size and/or address-sized prefix to an instruction (see
“Instruction Prefixes” on page 11-1). The effect of this prefix applies only to the instruction it is
attached to.

Table 3-1 on page 3-13 shows effective operand size and address size (when executing in
protected mode), depending on the settings of the B flag and the operand-size and address-size
prefixes.

Notes
Y Yes, this instruction prefix is present
N No, this instruction prefix is not present

Table 3-1. Effective Operand- and Address-Size Attributes

B Flag in Code Segment
Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

4-1

CHAPTER 4
PROCEDURE CALLS, INTERRUPTS, AND

EXCEPTIONS

This chapter describes the facilities in the Pentium Pro processor for executing calls to proce-
dures or subroutines. It also describes how interrupts and exceptions are handled from the
perspective of an application programmer.

4.1. PROCEDURE CALL TYPES

The processor supports procedure calls in two different ways:

• CALL and RET instructions.

• ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply
as “the stack,” to save the state of the calling procedure, pass parameters to the called procedure,
and store local variables for the currently executing procedure.

The processor’s facilities for handling interrupts and exceptions is similar to those used by the
CALL and RET instructions.

4.2. PROCEDURE STACK

The procedure stack (shown in Figure 4-1 on page 4-2) is a contiguous array of memory loca-
tions. It is contained in a segment and identified by the segment selector in the SS register.
(When using the flat memory model, the stack can be located anywhere in the linear address
space for the program.) A stack can be up to 4 gigabytes long, the maximum size of a segment.

The next available memory location on the stack is called the top of stack. At any given time,
the stack pointer (contained in the ESP register) gives the address (that is the offset from the base
of the SS segment) of the top of the stack.

Items are placed on the stack using the PUSH instruction and removed from the stack using the
POP instruction. When an item is pushed onto the stack, the processor decrements the ESP
register, then writes the item at the new top of stack. When an item is popped off the stack, the
processor reads the item from the top of stack, then increments the ESP register. In this manner,
the stack grows down in memory (towards lesser addresses) when items are pushed on the stack
and grows up (towards greater addresses) when the items are popped from the stack.

4-2

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

A program, operating system, or executive can set up many stacks. For example, in multitasking
systems, each task can be given its own stack. The number of stacks in a system is limited by
the maximum number of segments and the available physical memory. When a system sets up
many stacks, only one stack, the current stack, is available at a time. The current stack is the one
contained in the segment referenced by the SS register.

The processor references the SS register automatically for all stack operations. For example,
when the ESP register is used as a memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE instructions all perform
operations on the current stack.

4.2.1. Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word)
boundaries, depending on the width of the stack segment. The Bflag in the segment descriptor
for the current code segment sets the stack-segment width (see the discussion of segment
descriptors in Chapter 3, Protected-Mode Memory Management, in the Pentium Pro Family De-
veloper’s Manual, Volume 3). The PUSH and POP instructions use the Bflag to determine how

Figure 4-1. Procedure Stack Structure

Bottom of Stack
(Initial ESP Value)

Local Variables
for Calling
Procedure

Parameters
Passed to

Called
Procedure

Frame Boundary
EBP Register

ESP Register

Return Instruction

Top of Stack

Procedure Stack

Pushes Move the
Top Of Stack to
Lower Addresses

Pops Move the
Top Of Stack to
Higher Addresses

The EBP register is

The Stack Can Be
16 or 32 Bits Wide

typically set to point
to the return
instruction pointer.

Pointer

4-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

much to decrement or increment the stack pointer on a push or pop operation, respectively.
When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit incre-
ments; when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit in-
crements. If a 16-bit value is pushed onto a 32-bit wide stack, the value is automatically padded
with zeros out to 32 bits.

The processor does not check stack pointer alignment. It is the responsibility of the programs,
tasks, and system procedures running on the processor to maintain proper alignment of stack
pointers. Misaligning a stack pointer can cause serious performance degradation and in some
instances program failures.

4.2.2. Address-Size Attribute for Stack

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have an
address-size attribute of either 16 or 32 bits. Instructions with a address-size attribute of 16 use
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH; instructions
with a address-size attribute of 32 bits use the 32-bit ESP register and can use a maximum
address of FFFFFFFFH.

The default address-size attribute for data segments used as stacks is controlled by the Bflag of
the segment’s segment descriptor. When this flag is clear, the default address-size attribute is 16;
when the flag is set, the address-size attribute is 32.

4.2.3. Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and
the return instruction pointer. When used in conjunction with a standard software procedure-call
technique, these pointers permit reliable and coherent linking of procedures

4.2.3.1. STACK-FRAME BASE POINTER

The stack is typically divided into frames. Each stack frame can then contain local variables,
parameters to be passed to another procedure, and procedure linking information. The stack-
frame base pointer (contained in the EBP register) identifies a fixed reference point within the
stack frame for the called procedure. To use the stack-frame base pointer, the called procedure
typically copies the contents of the ESP register into the EBP register prior to pushing any local
variables on the stack. The stack-frame base pointer then permits easy access to data structures
passed on the stack, to the return instruction pointer, and to local variables added to the stack by
the called procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack.

4-4

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.2.3.2. RETURN INSTRUCTION POINTER

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes
the address in the EIP register into onto the current stack. This address is then called the return-
instruction pointer and it points to the instruction where execution of the calling procedure
should resume following a return from the called procedure. Upon returning from a called
procedure, the RET instruction pops the return-instruction pointer from the stack back into the
EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up
to the programmer to insure that stack pointer is pointing to the return-instruction pointer on the
stack, prior to issuing a RET instruction. A common way to reset the stack pointer to the point
to the return-instruction pointer is to move the contents of the EBP register into the ESP register.
If the EBP register is loaded with the stack pointer following a procedure call, it should point to
the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling proce-
dure. Prior to executing the RET instruction, the return instruction pointer can be manipulated
in software to point to any address in the code segment. Performing such an operation, however,
should be undertaken very cautiously, using only well defined code entry points.

4.3. CALLING PROCEDURES USING CALL AND RET

The CALL instructions allows jumps to procedures within the current code segment (near call)
and in a different code segment (far call). (When using the flat memory model, a near call refer-
ences a procedure within the current linear address space and a far call references a procedure
in another linear address space.) Near calls provide access to procedures within the currently
running program or task. Far calls are used to access operating system procedures or procedures
in a different task. See “CALL—Call Procedure” on page 11-42 for a detailed description of the
CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the
CALL instruction. In addition, the RET instruction allows a program to increment the stack
pointer on a return to release parameters from the stack. The number of bytes released from the
stack is determined by an optional argument to the RET instruction. See “RET—Return from
Procedure” on page 11-336 for a detailed description of the RET instruction.

4.3.1. Near CALL and RET Operation

When executing a near call, the processor does the following:

1. Pushes the current value of the EIP register on the stack.

2. Loads the address of the called procedure in the EIP register.

3. Begins execution of the called procedure.

4-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

3. Resumes execution of the calling procedure.

4.3.2. Far CALL and RET Operation

When executing a far call, the processor performs these actions:

1. Pushes current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS
register.

4. Loads the address of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to)
into the CS register.

3. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

4. Resumes execution of the calling procedure.

4.3.3. Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose
registers, in an argument list, or on the stack.

4.3.3.1. PASSING PARAMETERS THROUGH THE GENERAL-PURPOSE
REGISTERS

The processor does not save the state of the general-purpose registers on procedure calls. A
calling procedure can thus pass up to six parameter to the called procedure by copying the
parameters into any of these registers (except the ESP and EBP registers) prior to executing the
CALL instruction. The called procedure can likewise pass parameters back to the calling proce-
dure through general-purpose registers.

4-6

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.3.3.2. PASSING PARAMETERS ON THE STACK

To pass a large number of parameters to the called procedure, the parameters can be placed on
the stack, in the stack frame for the calling procedure. Here, it is useful to use the stack-frame
base pointer (in the EBP register) to make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling
procedure.

4.3.3.3. PASSING PARAMETERS IN AN ARGUMENT LIST

An alternate method of passing a larger number of parameters (or a data structure) to the called
procedure is to place the parameters in an argument list in memory (in one of the data segments).
A pointer to the argument list can then be passed to the called procedure through a general-
purpose register or the stack. Parameters can also be passed back to the calling procedure in this
same manner.

4.3.4. Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or
the EFLAGS register on a procedure call. A calling procedure should explicitly save the values
in any of the general-purpose registers that it will need when it resumes execution after a return.
These values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA instruction facilitates saving and restoring the contents of the general-
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in
the following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing the PUSHA
instruction), EBP, ESI, and EDI. The POPA instruction pops all the register values saved with a
PUSHA instruction (except the ESI value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former value before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register it can save and restore
all or part of the register using the PUSHF, PUSHFH, POPF, and POPFH instructions. The
PUSHF instruction pushes the lower word of the EFLAGS register on the stack and the
PUSHFH instruction pushes the entire register. The POPF instruction pops a word from the
stack into the lower word of the EFLAGS register and the POPFH instruction pops a double
word from the stack into the register.

4.3.5. Calls to Other Privilege Levels

The Pentium Pro processor’s protection mechanism recognizes four privilege levels, numbered
from 0 to 3, where greater numbers mean lesser privileges. The primary reason to use these priv-
ilege levels is to improve the reliability of operating systems. For example, Figure 4-2 on page
4-7 shows how privilege levels can be interpreted as rings of protection.

4-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments
that contain the most critical code modules in the system, usually the kernel of an operating
system. The outer rings (with progressively lower privileges) are used for segments that contain
code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at higher privi-
lege segments by means of a tightly controlled and protected interface called a gate. Attempts
to access higher privilege segments without going through a protection gate and without having
sufficient access rights causes a general-protection exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a proce-
dure that is in a more privileged protection level than the calling procedure is handled in a
similar manner as a far call (see “Far CALL and RET Operation” on page 4-5). The differences
are as follows:

• The segment selector provided in the CALL instruction references a special data structure
called a call gate descriptor. Among other things, the call gate descriptor provides the
following:

— Access rights information.

— The segment selector for the code segment of the called procedure.

— An offset into the code segment (that is, the instruction pointer for the called
procedure).

Figure 4-2. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services (Device

Drivers, Etc.)

Applications

0 1 2 3
Highest Lowest

Privilege Levels

System
Kernel

4-8

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

• The processor switches to a new stack to execute the called procedure. The segment
selector for the new stack is also contained in the call gate descriptor. On a return from the
called procedure, the processor restores the stack of the calling procedure.

The use of a call gate and the stack switch are transparent to the calling procedure, except when
a general-protection exception is raised.

4.3.6. CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see
Figure 4-3 on page 4-9):

1. Pushes current values of the CS and EIP register on the stack.

2. Performs an access rights check (privilege check).

3. Switches to the stack for the privilege level being called.

4. Copies the SS and ESP values for the calling procedure’s stack to the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. (A value in the
call gate descriptor determines how many parameters to copy to the new stack.)

6. Copies the CS and EIP values from the calling procedure’s stack to the new stack.

7. Loads the address of the called procedure in the EIP register.

8. Begins execution of the called procedure.

4-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When executing a return from the privileged procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS, EIP, SS, and ESP registers to their values prior to the call.

3. Switches back to the stack of the calling procedure

4. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

5. Resumes execution of the calling procedure.

See Chapter 4, Protection, in the Pentium Pro Family Developer’s Manual, Volume 3 for detailed
information on calls to privileged levels and the call gate descriptor.

4.4. INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution: interrupts and
exceptions:

• An interrupt is an asynchronous events that is typically triggered by an I/O device.

• An exception is a synchronous event that is generated when the processor detects one or
more predefined conditions while executing an instruction.

Figure 4-3. Stack Switch on a Call to a Different Privilege Level

Error Code
Calling CS

Parm 1
Parm 2

ESP Before Call

Stack for
Calling Procedure

ESP After Call

Stack for
Called Procedure

Calling EIP

Calling SS
Calling ESP

Error Code
Calling CS

Parm 1
Parm 2

Calling EIP

Stack Frame
Before Call

Stack Frame
After CallParm 3 Parm 3

ESP After Return

ESP Before Return

Calling SS
Calling ESP

Error Code
Calling CS

Parm 1
Parm 2

Calling EIP

Parm 3

4-10

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The processor responds to interrupts and exceptions in essentially the same way. When an inter-
rupt and exception is signaled, the processor halts execution of the current program or task and
switches to a handler procedure that has been written specifically to handle the interrupt or
exception condition. When the handler has completed handling the interrupt or exception,
program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and excep-
tions independently from application programs or tasks. Application programs can, however,
access the interrupt and exception handlers incorporated in an operating system or executive
through assembly-language calls. The remainder of this section gives a brief overview of the
processor’s interrupt and exception handling mechanism. See Chapter 5, Interrupt and Excep-
tion Handling, in the Pentium Pro Family Developer’s Manual, Volume 3 for a detailed descrip-
tion of this mechanism.

The Pentium Pro processor defines 16 predefined interrupts and exceptions and 224 user defined
interrupts. Each interrupt and exception is identified with a number, called a vector. Table 4-1
on page 4-11 lists the interrupts and exceptions that the processor recognizes and their respective
vector numbers. Vectors 0 through 8, 10 through 14, and 16 through 18 are the predefined inter-
rupts and exceptions, and vectors 32 through 255 are the user-defined interrupts, called
maskable interrupts.

When the processor detects an interrupt or exception, it does one of the following things:

• Executes an implicit call to a handler procedure.

• Executes an implicit call to a handler task.

4-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.4.1. Call and Return Operation for Interrupt or Exception
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another
protection level (as described in “CALL and RET Operation Between Privilege Levels” on
page 4-8). Here, the interrupt vector references one of two kinds of gates: an interrupt gate or a
trap gate. Interrupt and trap gates are similar to call gates in that they provide the following
information:

• Access rights information.

• The segment selector for the code segment that contains the handler procedure.

• An offset into the code segment to the first instruction of the handler procedure.

Table 4-1. Exceptions and Interrupts

Vector No. Description Source

 0 Divide Error (#DE) DIV and IDIV instructions.

 1 Debug (#DB) Any code or data reference.

 2 NMI Interrupt External interrupt.

 3 Breakpoint (#BP) INT 3 instruction.

 4 Overflow (#OF) INTO instruction.

 5 BOUND Range Exceeded (#BR) BOUND instruction.

 6 Invalid Opcode (#UD) UD2 instruction or reserved opcode.

 7 Device Not Available (#NM) Floating-point or WAIT/FWAIT instruction.

 8 Double Fault (#DF) Any instruction.

 9 CoProcessor Segment Overrun
(reserved)

Floating-point instruction. Pentium Pro processor does
not generate this exception.

10 Invalid TSS (#TS) Task switch.

11 Segment Not Present (#NP) Loading segment registers or accessing system
segments.

12 Stack Fault (#SS) Stack operations.

13 General Protection (#GP) Any memory reference.

14 Page Fault (#PF) Any memory reference.

15 (Intel reserved. Do not use.)

16 Floating-Point Error (#MF) Floating-point or WAIT/FWAIT instruction.

17 Alignment Check (#AC) Any data reference in memory.

18 Machine Check (#MC) Model dependent.

19-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts External interrupt or INT n instruction.

4-12

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The difference between an interrupt gate and a trap gate are as follows. If an interrupt or excep-
tion handler is called through an interrupt gate, the processor clears the interrupt enable (IF) flag
in the EFLAGS register to prevent subsequent interrupts from interfering with the execution of
the handler. When a handler is called through a trap gate, the state of the IF flag is not changed.

If the code segment for the handler procedure has the same privilege level as the currently
executing program or task, the handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or excep-
tion handler (see Figure 4-4 on page 4-12):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the
stack.

2. Pushes an error code (if appropriate) on the stack.

3. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

4. Transfers program control to the handler procedure.

Figure 4-4. Stack Usage on Calls to Interrupt and Exception Handling Routines

Calling CS

Error Code

EFLAGS
Calling CS
Calling EIP

ESP After
Call to Handler

EFLAGS

Error Code

Calling CS
Calling EIP

Calling SS
Calling ESP

ESP Before
Call to Handler

Calling EFLAGS

Calling EIP

Calling SS
Calling ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Calling Procedure’s Stack

Calling and Handler
Procedure’s Stack

Handler Procedures’s Stack

ESP After
Call to Handler

4-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If a stack switch does occur, the processor does the following:

1. Pushes the current contents of the SS, ESP, EFLAGS, CS, and EIP registers (in that order)
on the stack.

2. Switches to the handler’s stack.

3. Copies the SS, ESP, EFLAGS, CS, and EIP values from the interrupted procedure’s stack
to the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

6. Transfers program control to the handler procedure.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET
instruction is similar to the RET instruction, except that it also restores the contents of the
EFLAGS register for the interrupted procedure:

When executing a return from an interrupt or exception handler from the same privilege level as
the interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level
than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception.

5. Switches back to the stack of the calling procedure

6. Resumes execution of the calling procedure.

4.4.2. Calls to an Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an inter-
rupt or exception causes a task switch to a handler task. The handler task is given its own address
space and (optionally) can execute at a higher protection level than application programs or
tasks.

4-14

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The switch to the handler task is accomplished with an implicit task call that references a task
gate descriptor. The task gate provides access to the address space for the handler task. As part
of the task switch, the processor saves complete state information for the interrupted program or
task. Upon returning from the handler task, the state of the interrupted program or task is
restored and execution continues. See Chapter 5, Interrupt and Exception Handling, in the
Pentium Pro Family Developer’s Manual, Volume 3 for a detailed description of the processor’s
mechanism for handling interrupts and exceptions through handler tasks.

4.4.3. Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with
a far call to an interrupt or exception handler. The processor uses the interrupt or exception
vector number as an index into an interrupt table. The interrupt table contains instruction
pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an
optional error code on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction.

See Chapter 12, 8086 Emulation, in the Pentium Pro Family Developer’s Manual, Volume 3 for
more information on handling interrupts and exceptions in real-address mode.

4.4.4. INTn, INTO, INT3, and BOUND Instructions

The INTn, INTO, INT3, and BOUND instructions allow a program or task to explicitly call an
interrupt or exception handler. The INTn instruction uses an interrupt vector as an argument,
which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag
(OF) in the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions,
but it does not automatically raise an overflow exception. An overflow exception can only be
raised explicitly in either of the following ways:

• Execute the INTO instruction.

• Test the OF flag and execute the INTn instruction with an argument of 4 (the vector
number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at
specific places in the instruction stream.

The INT3 instruction explicitly calls the breakpoint exception (#BP) handler. The action of this
instruction is slightly different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call
to Interrupt Procedure” on page 11-216).

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler
if an operand is found to be not within predefined boundaries in memory. This instruction is
provided for checking references to arrays and other data structures. Like the overflow

4-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

exception, the BOUND-range exceeded exception can only be raised explicitly with the
BOUND instruction or the INTn instruction with an argument of 5 (the vector number of the
bounds-check exception). The processor does not implicitly perform bounds checks and raise
the BOUND-range exceeded exception.

4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The Pentium Pro processor supports an alternate method of performing procedure calls with the
ENTER (enter procedure) and LEAVE (leave procedure) instructions. These instructions auto-
matically create and release, respectively, stack frames for called procedures. The stack frames
have predefined spaces for local variables and the necessary pointers to allow coherent returns
from called procedures. They also allow scope rules to be implemented, so that procedures can
access their own local variables and some number of other variables located in other stack
frames.

The ENTER and LEAVE instructions offer two benefits:

• They provide machine-language support for implementing block-structured languages,
such as C and Pascal.

• They simplify procedure entry and exit in compiler-generated code.

4.5.1. ENTER Instruction

The enter procedure instruction (ENTER) creates a stack frame compatible with the scope rules
typically used in block-structured languages. In block-structured languages, the scope of a
procedure is the set of variables to which it has access. The rules for scope vary among
languages. They may be based on the nesting of procedures, the division of the program into
separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be reserved
on the stack for dynamic storage for the procedure being called. Dynamic storage is the memory
allocated for variables created when the procedure is called, also known as automatic variables.
The second parameter is the lexical nesting level (from 0 to 31) of the procedure. The nesting
level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unrelated
to either the protection privilege level or to the I/O privilege level of the currently running
program or task.

The ENTER instruction in the following example, allocates 2K bytes of dynamic storage on the
stack and sets up pointers to two previous stack frames in the stack frame for this procedure.

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access the
variables of a procedure. The set of stack frame pointers used by a procedure to access the

4-16

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

variables of other procedures is called the display. The first doubleword in the display is a
pointer to the previous stack frame. This pointer is used by a LEAVE instruction to undo the
effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic (auto-
matic) local variables for the procedure by decrementing the contents of the ESP register by the
number of bytes specified in the first parameter. This new value in the ESP register serves as the
initial top-of-stack for all PUSH and POP operations within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions that specify
the EBP register as a base register automatically address locations within the stack segment
instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is
0, the non-nested form is used. The non-nested form pushes the contents of the EBP register on
the stack, copies the contents of the ESP register into the EBP register, and subtracts the first
operand from the contents of the ESP register to allocate dynamic storage. The non-nested form
differs from the nested form in that no stack frame pointers are copied. The nested form of the
ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE
is the number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

PUSH EBP;
FRAME_PTR ← ESP;
IF LEVEL > 0

THEN
REPEAT (LEVEL − 1) times

EBP ← EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

TAEPER
PUSH FRAME_PTR;

FI;
EBP ← FRAME_PTR;
ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A level
2 procedure can access the variables of the main program, which are at fixed locations specified
by the compiler. In the case of level 1, the ENTER instruction allocates only the requested
dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical levels.

4-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The new stack frame does not include the pointer for addressing the calling procedure's stack
frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical
level. In this case, each succeeding iteration of the re-entrant procedure can address only its own
variables and the variables of the procedures within which it is nested. A re-entrant procedure
always can address its own variables; it does not require pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels, not
those at parallel lexical levels (see Figure 4-5 on page 4-17).

Block-structured languages can use the lexical levels defined by ENTER to control access to the
variables of nested procedures. In Figure 4-5, for example, if procedure A calls procedure B
which, in turn, calls procedure C, then procedure C will have access to the variables of the
MAIN procedure and procedure A, but not those of procedure B because they are at the same
lexical level. The following definition describes the access to variables for the nested procedures
in Figure 4-5.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot
access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. procedure C cannot
access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure
D cannot access the variables of procedure B.

In Figure 4-6 on page 4-18, an ENTER instruction at the beginning of the MAIN procedure
creates three doublewords of dynamic storage for MAIN, but copies no pointers from other stack
frames. The first doubleword in the display holds a copy of the last value in the EBP register

Figure 4-5. Nested Procedures

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

Procedure B (Lexical Level 3)

Procedure C (Lexical Level 3)

Procedure D (Lexical Level 4)

4-18

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

before the ENTER instruction was executed. The second doubleword holds a copy of the
contents of the EBP register following the ENTER instruction. After the instruction is executed,
the EBP register points to the first doubleword pushed on the stack, and the ESP register points
to the last doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 4-7
on page 4-19). The first doubleword is the last value held in MAIN's EBP register. The second
doubleword is a pointer to MAIN's stack frame which is copied from the second doubleword in
MAIN's display. This happens to be another copy of the last value held in MAIN's EBP register.
Procedure A can access variables in MAIN because MAIN is at level 1. Therefore the base
address for the dynamic storage used in MAIN is the current address in the EBP register, plus
four bytes to account for the saved contents of MAIN's EBP register. All dynamic variables for
MAIN are at fixed, positive offsets from this value.

Figure 4-6. Stack Frame after Entering the MAIN Procedure

EBP
Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

4-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When procedure A calls procedure B, the ENTER instruction creates a new display (see
Figure 4-8 on page 4-20). The first doubleword holds a copy of the last value in procedure A's
EBP register. The second and third doublewords are copies of the two stack frame pointers in
procedure A's display. Procedure B can access variables in procedure A and MAIN by using the
stack frame pointers in its display.

Figure 4-7. Stack Frame after Entering Procedure A

EBP
Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP

4-20

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When procedure B calls procedure C, the ENTER instruction creates a new display for proce-
dure C (see Figure 4-9 on page 4-21). The first doubleword holds a copy of the last value in
procedure B's EBP register. This is used by the LEAVE instruction to restore procedure B's stack
frame. The second and third doublewords are copies of the two stack frame pointers in proce-
dure A's display. If procedure C were at the next deeper lexical level from procedure B, a fourth
doubleword would be copied, which would be the stack frame pointer to procedure B's local
variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to
access procedure B's variables. This does not mean that procedure C is completely isolated from
procedure B; procedure C is called by procedure B, so the pointer to the returning stack frame
is a pointer to procedure B's stack frame. In addition, procedure B can pass parameters to proce-
dure C either on the stack or through variables global to both procedures (that is, variables in the
scope of both procedures).

Figure 4-8. Stack Frame after Entering Proc edure B

EBP

Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Main’s EBP

Procedure A’s EBP

4-21

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.5.2. LEAVE Instruction

The LEAVE instruction reverses the action of the previous ENTER instruction. The LEAVE
instruction does not have any operands. The LEAVE instruction copies the contents of the EBP
register into the ESP register to release all stack space allocated to the procedure. Then the
LEAVE instruction restores the old value of the EBP register from the stack. This simulta-
neously restores the ESP register to its original value. A subsequent RET instruction then can
remove any arguments and the return address pushed on the stack by the calling program for use
by the procedure.

Figure 4-9. Stack Frame after Entering Procedure C

EBP

Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Procedure C’s EBP

Main’s EBP

Procedure A’s EBP

5-1

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes data types and addressing modes available to programmers of the
Pentium Pro processor.

5.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the Pentium Pro processor are bytes, words, doublewords, and
quadwords (see Figure 5-1 on page 5-1). A byte is eight bits, a word is 2 bytes (16 bits), a
doubleword is 4 bytes (32 bits), and a quadword is 8 bytes (64 bits).

Figure 5-2 on page 5-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bits 0 through 7) of each data type occupies the
lowest address in memory and that address is also the address of the operand.

5.1.1. Alignment of Words, Doublewords, and Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural bound-
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respec-
tively.) To improve the performance of programs, however, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the
processor requires two clock cycles to make an unaligned memory access; whereas, aligned

Figure 5-1. Fundamental Data Types

0

63

Quadword

0

Word

31

0

Doubleword

15

0

Byte

7

78
N

Low WordHigh Word

Low DoublewordHigh Doubleword

1516

3132

N+1 N

N

N+2

N+4

N

Low
Byte

High
Byte

5-2

DATA TYPES AND ADDRESSING MODES

accesses require only one clock cycle. For the Pentium Pro processor, a word or doubleword
operand that crosses a 4-byte boundary and a quadword operand that crosses an 8-byte boundary
is considered an unaligned and requires two clock cycles to access; a word that starts on an odd
address but does not cross a word boundary is considered aligned and can still be accessed in
one clock cycle.

5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES

Although bytes, words, and doublewords are the fundamental data types for the Pentium Pro
processor, some instructions recognize and operate on additional numeric, pointer, bit field, and
string data types (see in Figure 5-3 on page 5-3). These additional data types are described in the
following sections.

5.2.1. Integers

Integers are signed binary numbers held in a byte, word, or doubleword. All operations assume
a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a
word integer, and bit 31 in a doubleword integer. The sign bit is set for negative integers and
cleared for positive integers and zero. Integer values range from –128 to +127 for a byte integer,
from –32,768 to +32,767 for a word integer, and from –231 to +231 – 1 for a doubleword integer.

Figure 5-2. Bytes, Words, Doublewords and Quadwords in Memory

EH

DH7AH

CHFEH

BH06H

AH36H

9H1FH

8HA4H

7H23H

6H0HB

5H

4H

3H74H

2HCBH

1H31H

0H

Quadword at Address 6H
Contains 7AFE06361FA4230BH

Doubleword at Address AH
Contains 7AFE0636H

Word at Address BH
Contains FE06H

Byte at Address 9H
Contains 1FH

Word at Address 6H
Contains 230BH

Word at Address 1H
Contains CB31H

Word at Address 2H
Contains 74CBH

5-3

DATA TYPES AND ADDRESSING MODES

Figure 5-3. Numeric, Pointer, and Bit Field Data Types

047

Far Pointer or Logical Address

Segment Selector
32 31

Offset

0

Near Pointer

31

Offset or Linear Address

Bit Field

Field Length

0

Doubleword Unsigned Integer

31

0

Packed BCD Integers

7
BCDBCDBCDBCDBCDBCD
34

. . . .

0

BCD Integers

7

BCDXBCDXBCDX

34
. . . .

0

Word Unsigned Integer

15

0

Byte Unsigned Integer

7

0

Doubleword Signed Integer

31 30

0

Word Signed Integer

15 14

0

Byte Signed Integer

7 6

Sign

Sign

Sign

Least

Bit
Significant

5-4

DATA TYPES AND ADDRESSING MODES

5.2.2. Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, or doubleword.
Unsigned integer values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for
an unsigned word integer, and from 0 to 232 – 1 for an unsigned doubleword integer. Unsigned
integers are sometimes referred to as ordinals.

5.2.3. BCD Integers

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from 0 to 9. BCD integers can be unpacked (one BCD digit per byte) or packed (two
BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition
and subtraction, but must be zero during multiplication and division.

Packed BCD integers allow two BCD digits to be contained in one byte. Here, the digit in the
high half-byte is more significant than the digit in the low half-byte.

5.2.4. Pointers

Pointers are addresses of locations in memory. The Pentium Pro processor recognizes two types
of pointers: a near pointer (32 bits) and a far pointer (48 bits). A near pointer is a 32-bit offset
(also called an effective address) within a segment. Near pointers are used for all memory refer-
ences in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied. A far pointer is a 48-bit logical address, consisting of a 16-bit
segment selector and a 32-bit offset. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be specified explicitly.

5.2.5. Bit Fields

A bit field is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

5.2.6. Strings

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin
at any bit position of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes,
words, or doublewords and can range from zero to 232 – 1 bytes (4 gigabytes).

5.2.7. Floating-Point Data Types

The processor’s floating-point instructions also recognize a set of real, integer, and BCD integer
data types (see Chapter 7, Floating-Point Unit).

5-5

DATA TYPES AND ADDRESSING MODES

5.3. OPERAND ADDRESSING

A Pentium Pro processor machine-instruction acts on zero or more operands. Some operands are
specified explicitly in an instruction and others are implicit to an instruction. Whether specified
explicitly or implicitly, an operand can be located in any of the following places:

• The instruction itself (an immediate operand).

• A register.

• A memory location.

• An I/O port.

5.3.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are called immediate operands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:
ADD EAX, 14

All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate value varies among
instructions, but can never be greater than the maximum value of an unsigned doubleword
integer (232).

5.3.2. Register Operands

Source and destination operands can be located in any of the following registers, depending on
the instruction being executed:

• The 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).

• The 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

• The 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

• The segment registers (CS, DS, SS, ES, FS, and GS).

• The EFLAGS register.

• System registers, such as the global descriptor table (GDTR) or the interrupt descriptor
table register (IDTR).

Some instructions (such as the DIV and MUL instructions) use quadword operands contained
in a pair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, in the register pair EDX:EAX, EDX contains the high order bits and EAX contains the
low order bits of a quadword operand.

5-6

DATA TYPES AND ADDRESSING MODES

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as the Jcc instructions) use the state of the status flags in the EFLAGS register
as condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory manage-
ment, interrupt and exception handling, task management, processor management, and debug-
ging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a
system register with a system instruction, the register is generally an implied operand of the
instruction.

5.3.3. Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 5-4 on page 5-6). The segment selector specifies the segment containing
the operand and the offset (the number of bytes from the beginning of the segment to the first
byte of the operand) specifies the linear or effective address of the operand.

5.3.3.1. SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector is to load it in a segment register and then allow the processor
to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 5-1 on page 5-7.

Figure 5-4. Memory Operand Address

Offset (or Linear Address)

015
Segment

310

Selector

5-7

DATA TYPES AND ADDRESSING MODES

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is
contained in the EBX register:
MOV ES:[EBX], EAX;

(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

• Instruction fetches must be made from the code segment.

• Destination strings in string instructions must be stored in the data segment pointed to by
the ES register.

• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

5.3.3.2. SPECIFYING AN OFFSET

The offset part of a memory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

• Displacement—An 8-, 16-, or 32-bit value.

• Base—The value in a general-purpose register.

Table 5-1. Default Segment Selection Rules

Type of
Reference

Register
Used

Segment
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination
Strings

ES Data Segment
pointed to with
the ES register

Destination of string instructions.

5-8

DATA TYPES AND ADDRESSING MODES

• Index—The value in a general-purpose register.

• Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 5-5 on page 5-8 shows all the possible ways that these compo-
nents can be combined to create an effective address in the selected segment.

The uses of general-purpose registers as base or index components are restricted in the following
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default selection.
In all other cases, the DS segment is the default selection.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Figure 5-5. Offset (or Effective Address) Computation

Offset = Base + (Index ∗ Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

3

4

8-bit

16-bit

32-bit

Index Scale Displacement

*+ +

5-9

DATA TYPES AND ADDRESSING MODES

Base + Displacement

A base register and a displacement can be used together for two distinct purposes:

• As an index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

• To access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. This is a compact encoding for this common function.

(Index ∗ Scale) + Displacement

This address mode offers an efficient way to index into a static array when the element size is 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registers together supports either a two-dimensional array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index ∗ Scale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

5.3.3.3. ASSEMBLER ADDRESSING MODES

At the machine level, the selected combination of displacement, base register, index register, and
scale factor is encoded in an instruction. All assemblers provide addressing modes based on
combinations of these addressing components.

5.3.4. I/O Port Addressing

The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. An I/O
port can be addressed with either an immediate operand or a value in the DX register. See
Chapter 8, Input/Output, for more information about I/O port addressing.

6-1

CHAPTER 6
INSTRUCTION SET SUMMARY

This chapter lists all the instructions in the Pentium Pro processor’s instruction set, divided into
three functional groups: integer, floating-point, and system. It also briefly describes each of the
integer instructions.

Brief descriptions of the floating-point instructions are given in Chapter 7, Floating-Point Unit;
brief descriptions of the system instructions are given in the Pentium Pro Family Developer’s
Manual, Volume 3.

Detailed descriptions of all the Pentium Pro instructions are given in Chapter 11, Instruction Set
Reference. Included in this chapter are a description of each instruction’s encoding and opera-
tion, the effect of an instruction on the EFLAGS flags, and the exceptions an instruction may
generate.

6.1. NEW INSTRUCTIONS IN THE PENTIUM PRO PROCESSOR

The following instructions are new in the Pentium Pro processor:

• CMOVcc—Conditional move (see “Conditional Move Instructions” on page 6-13).

• FCMOVcc—Floating-point conditional move on condition-code flags in EFLAGS register
(see “Data Transfer Instructions” on page 7-30).

• FCOMI/FCOMIP/FUCOMI/FUCOMIP—Floating-point compare and set condition-code
flags in EFLAGS register (see “Comparison and Classification Instructions” on page
7-33).

• RDPMC—Read performance monitoring counters (see “RDPMC—Read Performance-
Monitoring Counters” on page 11-330).

• UD2—Undefined instruction (see “No-Operation and Undefined Instructions” on page
6-38).

6.2. INSTRUCTION SET LIST

This section lists all the Pentium Pro processor instructions divided into three major groups:
inter, floating-point, and system instructions. For each instruction, the mnemonic and descrip-
tive names are given. When two or more mnemonics are given (for example,
CMOVA/CMOVNBE), they represent different mnemonics for the same instruction opcode.
Assemblers support redundant mnemonics for some instructions to make it easier to read code
listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Conditional
move is not below or equal) represent the same condition.

6-2

INSTRUCTION SET SUMMARY

6.2.1. Integer Instructions

Integer instructions perform the integer arithmetic, logic, and program flow control operations
that programmers commonly use to write application and system software to run on the Pentium
Pro processor. In the following sections, the integer instructions are divided into several instruc-
tion subgroups.

6.2.1.1. DATA TRANSFER INSTRUCTIONS

MOV Move

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below
or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater
or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if
not greater

CMOVC Conditional move if carry

CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even

CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd

XCHG Exchange

6-3

INSTRUCTION SET SUMMARY

BSWAP Byte swap

XADD Exchange and add

CMPXCHG Compare and exchange

CMPXCHG8B Compare and exchange 8 bytes

PUSH Push onto stack

POP Pop off of stack

PUSHA/PUSHAD Push general-purpose registers onto stack

POPA/POPAD Pop general-purpose registers from stack

IN Read from a port

OUT Write to a port

CWD/CDQ Convert word to doubleword/Convert doubleword to quadword

CBW/CWDE Convert byte to word/Convert word to doubleword

MOVSX Move and sign extend

MOVZX Move and zero extend

6.2.1.2. BINARY ARITHMETIC

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply

MUL Unsigned multiply

IDIV Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare

6.2.1.3. DECIMAL ARITHMETIC

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

6-4

INSTRUCTION SET SUMMARY

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust before division

6.2.1.4. LOGIC INSTRUCTIONS

AND And

OR Or

XOR Exclusive or

NOT Not

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left

SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

6.2.1.5. BIT AND BYTE INSTRUCTIONS

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte
if not carry

6-5

INSTRUCTION SET SUMMARY

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte
if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow

SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare

6.2.1.6. CONTROL TRANSFER INST RUCTIONS

JMP Jump

JE/JZ Jump if equal/Jump if zero

JNE/JNZ Jump if not equal/Jump if not zero

JA/JNBE Jump if above/Jump if not below or equal

JAE/JNB Jump if above or equal/Jump if not below

JB/JNAE Jump if below/Jump if not above or equal

JBE/JNA Jump if below or equal/Jump if not above

JG/JNLE Jump if greater/Jump if not less or equal

JGE/JNL Jump if greater or equal/Jump if not less

JL/JNGE Jump if less/Jump if not greater or equal

JLE/JNG Jump if less or equal/Jump if not greater

JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

6-6

INSTRUCTION SET SUMMARY

JS Jump if sign (negative)

JNS Jump if not sign (non-negative)

JPO/JNP Jump if parity odd/Jump if not parity

JPE/JP Jump if parity even/Jump if parity

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero

LOOP Loop with ECX counter

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal

CALL Call procedure

RET Return

IRET Return from interrupt

INT Software interrupt

INTO Interrupt on overflow

BOUND Detect value out of range

ENTER High-level procedure entry

LEAVE High-level procedure exit

6.2.1.7. STRING INSTRUCTIONS

MOVS/MOVSB Move string/Move byte string

MOVS/MOVSW Move string/Move word string

MOVS/MOVSD Move string/Move doubleword string

CMPS/CMPSB Compare string/Compare byte string

CMPS/CMPSW Compare string/Compare word string

CMPS/CMPSD Compare string/Compare doubleword string

SCAS/SCASB Scan string/Scan byte string

SCAS/SCASW Scan string/Scan word string

SCAS/SCASD Scan string/Scan doubleword string

LODS/LODSB Load string/Load byte string

LODS/LODSW Load string/Load word string

LODS/LODSD Load string/Load doubleword string

STOS/STOSB Store string/Store byte string

6-7

INSTRUCTION SET SUMMARY

STOS/STOSW Store string/Store word string

STOS/STOSD Store string/Store doubleword string

REP Repeat while ECX not zero

REPE/REPZ Repeat while equal/Repeat while zero

REPNE/REPNZ Repeat while not equal/Repeat while not zero

INS/INSB Input string from port/Input byte string from port

INS/INSW Input string from port/Input word string from port

INS/INSD Input string from port/Input doubleword string from port

OUTS/OUTSB Output string to port/Output byte string to port

OUTS/OUTSW Output string to port/Output word string to port

OUTS/OUTSD Output string to port/Output doubleword string to port

6.2.1.8. FLAG CONTROL INSTRUCTIONS

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHF/PUSHFD Push EFLAGS onto stack

POPF/POPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

6.2.1.9. SEGMENT REGISTER INSTRUCTIONS

LDS Load far pointer using DS

LES Load far pointer using ES

LFS Load far pointer using FS

LGS Load far pointer using GS

LSS Load far pointer using SS

6-8

INSTRUCTION SET SUMMARY

6.2.1.10. MISCELLANEOUS INSTRUCTIONS

LEA Load effective address

NOP No operation

UB2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor Identification

6.2.2. Floating-Point Instructions

The floating-point instructions are those that are executed by the processor’s floating-point unit
(FPU). These instructions are used to operate on floating-point (real), extended integer, and
binary-coded decimal (BCD) operands. As with the integer instructions, the following list of
floating-point instructions is divided into subgroups.

6.2.2.1. DATA TRANSFER

FLD Load real

FST Store real

FSTP Store real and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal

FCMOVNE Floating-point conditional move if not equal

FCMOVB Floating-point conditional move if below

FCMOVBE Floating-point conditional move if below or equal

FCMOVNB Floating-point conditional move if not below

FCMOVNBE Floating-point conditional move if not below or equal

FCMOVU Floating-point conditional move if unordered

FCMOVNU Floating-point conditional move if not unordered

6-9

INSTRUCTION SET SUMMARY

6.2.2.2. BASIC ARITHMETIC

FADD Add real

FADDP Add real and pop

FIADD Add integer

FSUB Subtract real

FSUBP Subtract real and pop

FISUB Subtract integer

FSUBR Subtract real reverse

FSUBRP Subtract real reverse and pop

FISUBR Subtract integer reverse

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Multiply integer

FDIV Divide real

FDIVP Divide real and pop

FIDIV Divide integer

FDIVR Divide real reverse

FDIVRP Divide real reverse and pop

FIDIVR Divide integer reverse

FPREM Partial remainder

FPREMI IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

6.2.2.3. COMPARISON

FCOM Compare real

FCOMP Compare real and pop

6-10

INSTRUCTION SET SUMMARY

FCOMPP Compare real and pop twice

FUCOM Unordered compare real

FUCOMP Unordered compare real and pop

FUCOMPP Unordered compare real and pop twice

FICOM Compare integer

FICOMP Compare integer and pop

FCOMI Compare real and set EFLAGS

FUCOMI Unordered compare real and set EFLAGS

FCOMIP Compare real, set EFLAGS, and pop

FUCOMIP Unordered compare real, set EFLAGS, and pop

FTST Test real

FXAM Examine real

6.2.2.4. TRANSCENDENTAL

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x − 1

FYL2X y∗log2x

FYL2XP1 y∗log2(x+1)

6.2.2.5. LOAD CONSTANTS

FLD1 Load +1.0

FLDZ Load +0.0

FLDPI Load π

FLDL2E Load log2e

FLDLN2 Load loge2

FLDL2T Load log210

FLDLG2 Load log102

6-11

INSTRUCTION SET SUMMARY

6.2.2.6. FPU CONTROL

FINCSTP Increment FPU register stack pointer

FDECSTP Decrement FPU register stack pointer

FFREE Free floating-point register

FINIT Initialize FPU after checking error conditions

FNINIT Initialize FPU without checking error conditions

FCLEX Clear floating-point exception flags after checking for error
conditions

FNCLEX Clear floating-point exception flags without checking for error
conditions

FSTCW Store FPU control word after checking error conditions

FNSTCW Store FPU control word without checking error conditions

FLDCW Load FPU control word

FSTENV Store FPU environment after checking error conditions

FNSTENV Store FPU environment without checking error conditions

FLDENV Load FPU environment

FSAVE Save FPU state after checking error conditions

FNSAVE Save FPU state without checking error conditions

FRSTOR Restore FPU state

FSTSW Store FPU status word after checking error conditions

FNSTSW Store FPU status word without checking error conditions

WAIT/FWAIT Wait for FPU

FNOP FPU no operation

6.2.3. System Instructions

The following system instructions are used to control those functions of the processor that are
provided to support for operating systems and executives.

LGDT Load global descriptor table (GDT) register

SGDT Store global descriptor table (GDT) register

LLDT Load local descriptor table (LDT) register

SLDT Store local descriptor table (LDT) register

LTR Load task register

6-12

INSTRUCTION SET SUMMARY

STR Store task register

LIDT Load interrupt descriptor table (IDT) register

SIDT Store interrupt descriptor table (IDT) register

MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word

CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, with writeback

WBINVD Invalidate cache, no writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SSM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter

6.3. DATA MOVEMENT INSTRUCTIONS

The data movement instructions move bytes, words, doublewords, or quadwords both between
memory and the processor’s registers and between registers. These instructions are divided into
three groups:

• General-purpose data movement.

• Exchange.

• Stack manipulation.

• Type-conversion.

6-13

INSTRUCTION SET SUMMARY

6.3.1. General-Purpose Data Movement Instructions

The MOV (move) and CMOVcc (conditional move) instructions transfer data between memory
and registers or between registers.

6.3.1.1. MOVE INSTRUCTION

The MOV instruction performs basic load data and store data operations between memory and
the processor’s registers and data movement operations between registers. It handles data trans-
fers along the paths listed in Table 6-1. (See “MOV—Move to/from Control Registers” on page
11-285 and “MOV—Move to/from Debug Registers” on page 11-287 for information on
moving data to and from the control and debug registers.)

The MOV instruction cannot move data from one memory location to another or from one
segment register to another segment register. Memory-to-memory moves can be performed with
the MOVS (string move) instruction (see “String Operations” on page 6-32).

6.3.1.2. CONDITIONAL MOVE INSTRUCTIONS

The CMOVcc instructions are a group of instructions that check the state of the status flags in
the EFLAGS register and perform a move operation if the flags are in a specified state (or condi-
tion). These instructions can be used to move a 16- or 32-bit value from memory to a general-
purpose register or from one general-purpose register to another. The flag state being tested for
each instruction is specified with a condition code (cc) that is associated with the instruction. If
the condition is not satisfied, a move is not performed and execution continues with the instruc-
tion following the CMOVcc instruction.

Table 6-1. Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register
Memory location → Segment register

From a register to memory General-purpose register → Memory location
Segment register → Memory location

Between registers General-purpose register → General-purpose register
General-purpose register → Segment register
Segment register → General-purpose register
General-purpose register → Control register
Control register → General-purpose register
General-purpose register → Debug register
Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location

6-14

INSTRUCTION SET SUMMARY

Table 6-4 on page 6-30 shows the mnemonics for the CMOVcc instructions and the conditions
being tested for each instruction. The condition code mnemonics are appended to the letters
“CMOV” to form the mnemonics for the CMOVcc instructions. The instructions listed in
Table 6-4 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the same instruc-
tion. The assembler provides these alternate names to make it easier to read program listings.

The CMOVcc instructions are useful for optimizing small IF constructions. They also help elim-
inate branching overhead for IF statements and the possibility of branch mispredictions by the
processor.

These instructions may not be supported on some processors in the Pentium Pro processor
family. Software can check if the CMOVcc instructions are supported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
on page 11-73).

Table 6-2. Conditional Move Inst ructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

 CMOVA/CMOVNBE (CF or ZF)=0 Above/not below or equal

 CMOVAE/CMOVNB CF=0 Above or equal/not below

 CMOVNC CF=0 Not carry

 CMOVB/CMOVNAE CF=1 Below/not above or equal

 CMOVC CF=1 Carry

 CMOVBE/CMOVNA (CF or ZF)=1 Below or equal/not above

 CMOVE/CMOVZ ZF=1 Equal/zero

 CMOVNE/CMOVNZ ZF=0 Not equal/not zero

 CMOVP/CMOVPE PF=1 Parity/parity even

 CMOVNP/CMOVPO PF=0 Not parity/parity odd

Signed Conditional Moves

 CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less

 CMOVL/CMOVNGE (SF xor OF)=1 Less/not greater or equal

 CMOVLE/CMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 CMOVO OF=1 Overflow

 CMOVNO OF=0 Not overflow

 CMOVS SF=1 Sign (negative)

 CMOVNS SF=0 Not sign (non-negative)

6-15

INSTRUCTION SET SUMMARY

6.3.1.3. EXCHANGE INSTRUCTIONS

The exchange instructions swap the contents of one or more operands and, in some cases,
performs additional operations such as asserting the LOCK signal or modifying flags in the
EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes
the place of three MOV instructions and does not require a temporary location to save the
contents of one operand location while the other is being loaded. When a memory operand is
used with the XCHG instruction, the processor’s LOCK signal is automatically asserted. This
instruction is thus useful for implementing semaphores or similar data structures for process
synchronization. (See Chapter 7, Multiple Processor Management, in the Pentium Pro Family
Developer’s Manual, Volume 3 for more information on bus locking.)

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit
positions 0 through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 23. Executing this instruction twice in a row leaves the register in
the same value as before. The BSWAP instruction is useful for converting between “big-endian”
and “little-endian” data formats. This instruction also speeds execution of decimal arithmetic.
(The XCHG instruction can be used two swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the
two operands in the destination operand. The status flags in the EFLAGS register indicate the
result of the addition. This instruction can be combined with the LOCK prefix (see
“LOCK—Assert LOCK# Signal Prefix” on page 11-269) in a multiprocessing system to allow
multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of
the other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register
reflect the result that would have been obtained by subtracting the destination operand from the
value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks
to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the
ID of the current owner. This is all done in one uninterruptible operation. In a single-processor
system, the CMPXCHG instruction eliminates the need to switch to protection level 0 (to disable
interrupts) before executing multiple instructions to test and modify a semaphore. For multiple
processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare
and exchange operation atomically.

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a
64-bit value in ECX:EBX, and a destination operand in memory. The instruction compares the
64-bit value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit
value in the ECX:EBX register is stored in the destination operand. If the EDX:EAX register

6-16

INSTRUCTION SET SUMMARY

and the destination are not equal, the destination is loaded in the EDX:EAX register. The
CMPXCHG8B instruction can be combined with the LOCK prefix to perform the operation
atomically.

6.3.2. Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions let you
move data to and from the procedure stack. The PUSH instruction decrements the stack pointer
(contained in the ESP register), then copies the source operand to the top of stack (see Figure
6-1 on page 6-16). It operates on memory operands, immediate operands, and register operands
(including segment registers). The PUSH instruction is commonly used to place parameters on
the stack before calling a procedure. It can also be used to reserve space on the stack for tempo-
rary variables.

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack
(see Figure 6-2 on page 6-17). This instruction simplifies procedure calls by reducing the
number of instructions required to save the contents of the general-purpose registers. The regis-
ters are pushed on the stack in the following order: EAX, ECX, EDX, EBX, the initial value of
ESP before EAX was pushed, EBP, ESI, and EDI.

Figure 6-1. Operation of the PUSH Instruction

0
Stack

31

Before Pushing Doubleword

Growth

ESP
n − 4

n − 8

n

Procedure Stack

031

After Pushing Doubleword

ESPDoubleword Value

6-17

INSTRUCTION SET SUMMARY

The POP instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 6-3 on page 6-17). The destination operand
may specify a general-purpose register, a segment register, or a memory location.

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words
or doublewords from the top of the stack into the general-purpose registers, except for the ESP
register (see Figure 6-4 on page 6-18). If the address-size attribute is 32, the doublewords on the
stack are transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword,
EBX, EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. If
the address-size attribute is 16, the words on the stack are transferred to the registers in the
following order: DI, SI, BP, ignore word, BX, DX, CX, and AX.

Figure 6-2. Operation of the PUSHA Instruction

Figure 6-3. Operation of the POP Instruction

0Stack 31
Before Pushing Registers

Growth

ESPn - 4
n - 8

n

Procedure Stack

031
After Pushing Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Old ESP

ESI

n - 36

n - 20

n - 28

n - 12

n - 16

n - 24

n - 32

031
Stack

After Popping Doubleword

Growth

ESPn - 4
n - 8

n

Procedure Stack

Before Popping Doubleword

ESPDoubleword Value

031

6-18

INSTRUCTION SET SUMMARY

6.3.2.1. TYPE CONVERSION INSTRUCTIONS

The type conversion instructions convert bytes into words, words into doublewords, and double-
words into quadwords. These instructions are especially useful for converting integers to larger
integer formats, because they perform sign extension (see Figure 6-5 on page 6-18).

Two kinds of type conversion instructions are provided: simple conversion and move and
convert.

6.3.2.2. SIMPLE CONVERSION

The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD
(convert word to doubleword), and CDQ (convert doubleword to quadword) instructions
perform sign extension to double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position
of the upper byte of the AX register. The CWDE instruction copies the sign (bit 15) of the word
in the AX register into every bit position of the high word of the EAX register.

Figure 6-4. Operation of the POPA Instruction

Figure 6-5. Sign Extension

Stack

After Popping Registers

Growth

ESPn - 4
n - 8

n

Procedure Stack
Before Popping Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Ignored

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

0 310 31

31
After Sign

15 0

S N N N N N N N N N NN N N N NSSSSSSSSSSSS SSSS
Extension

Before Sign
15 0

S N N N N N N N N N NN N N N N
Extension

6-19

INSTRUCTION SET SUMMARY

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit posi-
tion in the DX register. The CDQ instruction copies the sign (bit 31) of the doubleword in the
EAX register into every bit position in the EDX register. The CWD instruction can be used to
produce a doubleword dividend from a word before a word division, and the CDQ instruction
can be used to produce a quadword dividend from a doubleword before doubleword division.

6.3.2.3. MOVE AND CONVERT

The MOVSX (move with sign extension) and MOVZX (move with zero extension) instructions
move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit
value by sign extending the source operand, as shown in Figure 6-5 on page 6-18. The MOVZX
instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit value by zero
extending the source operand.

6.4. BINARY ARITHMETIC INSTRUCTIONS

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed
or unsigned binary integers. Operations include the add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign (negate). The binary arithmetic instructions
may also be used in algorithms that operate on decimal (BCD) values.

6.4.1. Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on
signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is
set. This instruction is used to propagate a borrow when subtracting numbers in stages.

6.4.2. Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.

6-20

INSTRUCTION SET SUMMARY

6.4.3. Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are
not modified, nor is the result saved. The CMP instruction is commonly used in conjunction with
a Jcc (jump) or SETcc (byte set on condition) instruction, with the latter instructions performing
an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the
NEG instruction is to change the sign of a two's complement operand while keeping its
magnitude.

6.4.4. Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed
multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice
the size of the source operands (for example, if word operands are being multiplied, the result is
a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice
the size of the source operands; however, in some cases the result is truncated to the size of the
source operands (see “IMUL—Signed Multiply” on page 11-206).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed
division.

6.5. DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic can be performed with the Pentium Pro processor by combining the binary
arithmetic instructions ADD, SUB, MUL, and DIV (discussed in “Binary Arithmetic Instruc-
tions” on page 6-19) with the decimal arithmetic instructions. The decimal arithmetic instruc-
tions are provided to carry out the following operations:

• To adjust the results of a previous binary arithmetic operation to produce a valid BCD
result.

• To adjust the operands of a subsequent binary arithmetic operation so that the operation
will produce a valid BCD result.

These instructions operate only on both packed and unpacked BCD values.

6-21

INSTRUCTION SET SUMMARY

6.5.1. Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see “BCD Integers” on page
5-4). Adding two packed BCD values requires two instructions: an ADD instruction followed
by a DAA instruction. The ADD instruction adds (binary addition) the two values and stores the
result in the AL register. The DAA instruction then adjusts the value in the AL register to obtain
a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as the result
of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed
by a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from
another and stores the result in the AL register. The DAS instruction then adjusts the value in
the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal
borrow occurred as the result of the subtraction.

6.5.2. Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the
results of arithmetic operations performed in unpacked BCD values (see “BCD Integers” on
page 5-4). All these instructions assume that the value to be adjusted in stored in the AL register
or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the result in the AL register in unpacked BCD format (the decimal number is stored in the
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a result
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value. If
a borrow was required to complete the decimal subtract, the CF flag is set and the contents of
the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
the most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
DIV instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD
value in registers AH (most significant digit) and AL (least significant digit) into a binary value
and stores the result in register AL. When the value in AL is divided by an unpacked BCD value,
the quotient and remainder will be automatically encoded in unpacked BCD format.

6-22

INSTRUCTION SET SUMMARY

6.6. LOGICAL INSTRUCTIONS

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper-
ands; the NOT instruction operates on a single operand.

6.7. SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

• Shift.

• Double shift.

• Rotate.

6.7.1. Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 6-6 on page 6-22). They
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The
CF flag is loaded with the last bit shifted out of the operand.
.

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 6-7
on page 6-23). As with the SHL/SAL instruction, the empty bit positions are cleared and the CF
flag is loaded with the last bit shifted out of the operand.

Figure 6-6. SHL/SAL Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

Initial State

CF

0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01

After 1-bit SHL/SAL Instruction

0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00

After 10-bit SHL/SAL Instruction

Operand

6-23

INSTRUCTION SET SUMMARY

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 6-8
on page 6-24). This instruction differs from the SHR instruction in that it preserves the sign of
the source operand by clearing empty bit positions if the operand is positive or setting the empty
bits if the operand is negative. Again, the CF flag is loaded with the last bit shifted out of the
operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” on page 11-345).

Figure 6-7. SHR Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

Initial State CF

0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1

After 1-bit SHR Instruction

0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

After 10-bit SHR Instruction

Operand

6-24

INSTRUCTION SET SUMMARY

6.7.2. Double-shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified
number of bits from one operand to another (see Figure 6-9 on page 6-24). They are provided to
facilitate operations on unaligned bit strings. They can also be used to implement a variety of bit
string move operations.

Figure 6-8. SAR Instruction Operation

Figure 6-9. SHLD and SHRD Instruction Operations

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Positive Operand) CF

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Negative Operand)

Operand

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

CF

Destination (Memory or Register)CF

31 0

Source (Register)

31 0

Destination (Memory or Register) CF

31 0

Source (Register)

31 0

SHRD Instruction

SHLD Instruction

6-25

INSTRUCTION SET SUMMARY

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can
range from 0 to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the desti-
nation operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the
left in the destination operand, with the empty bit positions filled with bits shifted out of the
source operand.

6.7.3. Rotate Instructions

The ROL (Rotate Left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate
through carry right) instructions rotate the bits in the destination operand out of one end of an
operand and back through the other end (see Figure 6-10 on page 6-25). Unlike a shift, no bits
are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca-
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

Figure 6-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction

6-26

INSTRUCTION SET SUMMARY

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruc-
tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

6.8. BIT AND BYTE INSTRUCTIONS

The bit and byte instructions operate on bit or byte strings. They are divided into three groups:

• Bit test and modify instructions.

• Bit scan instructions.

• Byte set on condition.

• Test

6.8.1. Bit Test and Modify Instructions

The bit test and modify instructions (see Table 6-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined
by the modify operation for the instruction.

6.8.2. Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first set bit found in a destination register. The
bit index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The

Table 6-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and
Complement)

CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)

6-27

INSTRUCTION SET SUMMARY

BSF instruction scans the source operand low-to-high (from bit 0 of the source operand toward
the most significant bit); the BSR instruction scans high-to-low (from the most significant bit
toward the least significant bit).

6.8.3. Byte-Set-On-Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1,
depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register.
The suffix (cc) added to the SET mnemonic determines the condition being tested for. For
example, the SETO instruction tests for overflow. If the OF flag is set, destination byte is set to
1; if OF is clear, the destination byte is cleared to 0. Appendix B, EFLAGS Condition Codes lists
the conditions it is possible to test for with this instruction.

6.8.4. Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions
or the SETcc instructions. The TEST instruction differs from the AND instruction in that it does
not alter either of the operands.

6.9. CONTROL TRANSFER INSTRUCTIONS

The processor provides both conditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the
status flags in the EFLAGS register. Unconditional control transfers are always executed.

6.9.1. Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

6.9.1.1. JUMP INSTRUCTION

The JMP (jump) instruction unconditionally transfers program control to a destination instruc-
tion. The transfer is a one-way: a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address can be a relative
address or an absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the
EIP register. The displacement is specified with a signed integer, allowing jumps either forward
or backward in the instruction stream.

6-28

INSTRUCTION SET SUMMARY

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

• An address in a general-purpose register. This address is treated as a near pointer, which
is copied into the EIP register. Program execution then continues at the new address within
the current code segment.

• An address specified using the standard addressing modes of the processor. Here, the
address can be a near pointer or a far pointer. If the address is for a near pointer, the address
is translated into an offset and copied into the EIP register. If the address is for a far
pointer, the address is translated into a segment selector (which is copied into the CS
register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-
state segment.

6.9.1.2. CALL AND RETURN INSTRUCTIONS

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from
one procedure (or subroutine) to another and a subsequent jump back (return) to the calling
procedure.

The CALL instruction transfers program control from the current (or calling procedure) to
another procedure (the called procedure). To allow a subsequent return to the calling procedure,
the CALL instructions saves the current contents of the EIP register on the procedure stack
before jumping to the called procedure. The EIP register (prior to transferring program control)
contains address of the instruction following the CALL instruction. When this address is pushed
on the stack is referred to as the return instruction pointer.

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see
“Jump Instruction” on page 6-27). The address can be specified with as a relative address or an
absolute address. If an absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the
called procedure) back to the procedure that called it (the calling procedure). Transfer of control
is accomplished by copying the return instruction pointer from the stack into the EIP register.
Program execution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the
ESP register as part of the return operation. This operand allows to stack pointer to be incre-
mented to remove parameters from the stack that were pushed on the stack by the calling
procedure.

See “Calling Procedures Using CALL and RET” on page 4-4, for more information on the
mechanics of making procedure calls with the CALL and RET instructions.

6-29

INSTRUCTION SET SUMMARY

6.9.1.3. RETURN-FROM-INTERRUPT INSTRUCTION

When the processor services in interrupt, it performs an implicit call to an interrupt-handling
procedure. The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure (that is, the procedure that was executing when the
interrupt occurred). The IRET instruction performs a similar operation to the RET instruction
(see “Call and Return Instructions” on page 6-28) except that it also restores the EFLAGS
register from the procedure stack. The contents of the EFLAGS register are automatically stored
on the stack along with the return instruction pointer when the processor services an interrupt.
(As with the RET instruction, the IRET instruction has an optional operand for adjusting the
stack pointer.)

6.9.2. Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions for
control transfer are specified with a set of condition codes that define various states of the status
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

6.9.2.1. CONDITIONAL JUMP INSTRUCTIONS

The Jcc (conditional) jump instructions transfers program control to a destination instruction if
the conditions specified with the condition code (cc) associated with the instruction are satisfied.
If the condition is not satisfied, execution continues with the instruction following the Jcc
instruction. As with the JMP instruction, the transfer is a one-way; that is, a return address is not
saved.

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to a instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
a Jcc and a JMP instruction (see “Jcc—Jump if Condition Is Met” on page 11-237).

Table 6-4 on page 6-30 shows the mnemonics for the Jcc instructions and the conditions being
tested for each instruction. The condition code mnemonics are appended to the letter “J” to form
the mnemonic for a Jcc instruction. The instructions are divided into two groups: unsigned and
signed conditional jumps. These groups correspond to the results of operations performed on
unsigned and signed integers, respectively. Those instructions listed as pairs (for example,
JA/JNBE) are alternate names for the same instruction. The assembler provides these alternate
names to make it easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one
or more status flags. See “Jump If Zero Instructions” on page 6-31 for more information about
these instructions.

6-30

INSTRUCTION SET SUMMARY

6.9.2.2. LOOP INSTRUCTIONS

The LOOP (loop while ECX not zero), LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are condi-
tional jump instructions that use the value of the ECX register as a count for the number of times
to execute a loop. All the loop instructions decrement the count in the ECX register each time
they are executed and terminate a loop when zero is reached. Some of the loop instructions also
accept the ZF flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the
count in the ECX register are non-zero, program control is transferred to the instruction address
specified by the destination operand. The destination operand is a relative address (that is, a
offset relative to the contents of the EIP register), and it generally points the first instruction in

Table 6-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF)=0 Above/not below nor equal

 JAE/JNB CF=0 Above or equal/not below

 JB/JNAE CF=1 Below/not above nor equal

 JBE/JNA (CF or ZF)=1 Below or equal/not above

 JC CF=1 Carry

 JE/JZ ZF=1 Equal/zero

 JNC CF=0 Not carry

 JNE/JNZ ZF=0 Not equal/not zero

 JNP/JPO PF=0 Not parity/parity odd

 JP/JPE PF=1 Parity/parity even

 JCXZ CX=0 Register CX is zero

 JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less nor equal

 JGE/JNL (SF xor OF)=0 Greater or equal/not less

 JL/JNGE (SF xor OF)=1 Less/not greater nor equal

 JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 JNO OF=0 Not overflow

 JNS SF=0 Not sign (non-negative)

 JO OF=1 Overflow

 JS SF=1 Sign (negative)

6-31

INSTRUCTION SET SUMMARY

the block of code that is to be executed in the loop. When the count in the ECX register reaches
zero, program control is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the LOOP instruc-
tion is first executed, the register is pre-decremented to FFFFFFFFH, causing the loop to be
executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag. If the count in the ECX register is not zero and the ZF flag is set, program
control is transferred to destination operand. When the count reaches zero or the ZF flag is clear,
the loop is terminated by transferring program control to the instruction immediately following
the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the
same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is
set.

6.9.2.3. JUMP IF ZERO INSTRUCTIONS

The JECXZ (jump if ECX zero) instruction jumps to the location specified in the destination
operand if the ECX register contains the value zero. This instruction can be used in combination
with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX
register prior to beginning a loop. As described in “Loop Instructions” on page 6-30, the loop
instructions decrement the contents of the ECX register before testing for zero. If the value in
the ECX register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction
can be inserted at the beginning of the code block for the loop, causing a jump out the loop if
the EAX register count is initially zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated because the
count reached zero or because the scan or compare conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the
16-bit address-size attribute is used. Here, the CX register is tested for zero.

6.9.3. Software Interrupts

The INTn (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of
range) instructions allow a program to explicitly raise a specified interrupt or exception, which
in turn causes the handler routine for the interrupt or exception to be called.

The INTn instruction can raise any of the processors interrupts or exceptions by encoding the
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception handlers.
The IRET instruction (see “Return-From-Interrupt Instruction” on page 6-29) allows returns
from interrupt handling routines.

6-32

INSTRUCTION SET SUMMARY

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access the
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises
the “BOUND range exceeded” exception if the value is less than the lower bound or greater than
the upper bound. This instruction is useful for operations such as checking an array index to
make sure it falls within the range defined for the array.

6.10. STRING OPERATIONS

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string),
and STOS (Store string) instructions permit large data structures, such as alphanumeric char-
acter strings, to be moved and examined in memory. These instructions operate on individual
elements in a string, which can be a byte, word, or doubleword. The string elements to be oper-
ated on are identified with the ESI (source string element) and EDI (destination string element)
registers. Both of these registers contain absolute addresses (offsets into a segment) that point to
a string element.

By default, the ESI register addresses the segment identified with the DS segment register. A
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS
segment register. The EDI register addresses the segment identified with the ES segment
register; no segment override is allowed for the EDI register. The use of two different segment
registers in the string instructions permits operations to be performed on strings located in
different segments. Or by associating the ESI register with the ES segment register, both the
source and destination strings can be located in the same segment.

The MOVS instruction moves the string element addressed by the ESI register to the location
addressed by the EDI register. The assembler recognizes three versions of this instruction, which
specify the size of the string to be moved: MOVSB (move byte string), MOVSW (move word
string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element
and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to
the results. Neither string element is written back to memory. The assembler recognizes three
versions of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compare word
strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,
AX, or AL register (depending on operand length) and updates the status flags according to the
results. The string element and register contents are not modified. The following variations of
the SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan
word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the
EAX register (for a doubleword string), the AX register (for a word string), or the AL register
(for a byte string). The mnemonics normally used for this instruction are LODSB (load byte
string), LODSW (load word string), and LODSD (load doubleword string). This instruction is

6-33

INSTRUCTION SET SUMMARY

usually used in a loop, where other instructions process each element of the string after they are
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI
register. The mnemonics normally used for this instruction are STOSB (store byte string),
STOSW (store word string), and STOSD (store doubleword string). This instruction is also
normally used in a loop. Here a string is commonly loaded into the register with a LODS instruc-
tion, operated on by other instructions, and then stored again in memory with a STOS instruc-
tion.

The I/O instructions (see “I/O Instructions” on page 6-33) also perform operations on strings in
memory.

6.10.1. Repeating String Operations

The string instructions described in “String Operations” on page 6-32 perform one iteration of
a string operation. To operate strings longer than a doubleword, the string instructions can
combined with a repeat prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in the string. String operations can thus begin at higher addresses and work toward
lower ones, or they can begin at lower addresses and work toward higher ones. The DF flag in
the EFLAGS register controls whether the registers are incremented (DF=0) or decremented
(DF=1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to
cause a string instruction to repeat:

• REP—Repeat while the ECX register not zero.

• REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set.

• REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes
are used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
is the fastest way to initialize a large block of memory.

6.11. I/O INSTRUCTIONS

The IN (input from port to register), INS (input from port to string), OUT (output from register
to port), and OUTS (output string to port) instructions move data between the processor’s I/O
ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read
or written to is specified with an immediate operand or an address in the DX register.

6-34

INSTRUCTION SET SUMMARY

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between
an I/O port and memory. These instructions operate similar to the string instructions (see “String
Operations” on page 6-32). The ESI and EDI registers are used to specify string elements in
memory and the repeat prefixes (REP) are used to repeat the instructions to implement block
moves. The assembler recognizes the following alternate mnemonics for these instructions:
INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTB (output byte),
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be
read or written to.

6.12. ENTER AND LEAVE INSTRUCTIONS

The ENTER and LEAVE instructions provide machine-language support for procedures calls in
block-structured languages, such as C and Pascal. These instructions and the call and return
mechanism that they support are described in detail in “Procedure Calls for Block-Structured
Languages” on page 4-15

6.13. EFLAGS INSTRUCTIONS

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read or
modified.

6.13.1. Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the state the flag in an oper-
ation is executed. They are also used in conjunction with the rotate-with-carry instructions (RCL
and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers ESI and EDI are stepped when executing string processing instructions. If the DF flag
is clear, the index registers are incremented after each iteration of a string instruction; if the DF
flag is set, the registers are decremented.

6.13.2. Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF flag
in the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware-
generated interrupts (those received at the processor’s INTR pin). If the IF flag is set, the
processor services hardware interrupts; if the F flag is clear, hardware interrupts are masked.

6-35

INSTRUCTION SET SUMMARY

6.13.3. EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to copied to a
register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of
the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags
to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the
register 5, 3, and 1 are undefined, and the contents of the EFLAGS register remain unchanged.
The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF,
and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop
flags double) instructions copy the flags in the EFLAGS register to and from the procedure
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the stack (see
Figure 6-11 on page 6-35). The PUSHFD instruction pushes the entire EFLAGS register onto
the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the
current privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits
(bits 13 and 12) also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is
affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can
change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a
POPF instruction.

6.13.4. Interrupt Flag Instructions

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt
flag (IF) in the EFLAGS register, respectively. Clearing the IF flag causes external interrupts to
be ignored. The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to execute
these instructions.

Figure 6-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD inst ructions

PUSHFD/POPFD

PUSHF/POPF

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

6-36

INSTRUCTION SET SUMMARY

6.14. SEGMENT REGISTER INSTRUCTIONS

The processor provides a variety of instructions that address the segment registers of the
processor directly. These instructions are only used when an operating system or executive is
using the segmented or the real-address mode memory model.

6.14.1. Segment-Register Load and Store Instructions

The MOV instruction (introduced in “General-Purpose Data Movement Instructions” on page
6-13) and the PUSH and POP instructions (introduced in “Stack Manipulation Instructions” on
page 6-16) can transfer 16-bit segment selectors to and from segment registers (DS, ES, FS, GS,
and SS). The transfers are always made to or from a segment register and a general-purpose
register or memory. Transfers between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-
transfer versions of the JMP, CALL, and RET instructions (see “Far Control Transfer Instruc-
tions” on page 6-36) affect the CS register directly.

6.14.2. Far Control Transfer Instructions

The JMP and CALL instructions (see “Control Transfer Instructions” on page 6-27) both accept
a far pointer as a source operand to transfer program control to a segment other than the segment
currently being pointed to by the CS register. When a far call is made with the CALL instruction,
the current values of the EIP and CS registers are both pushed on the stack.

The RET instruction (see “Call and Return Instructions” on page 6-28) can be used to execute a
far return. Here, program control is transferred from a code segment that contains a called proce-
dure back to the code segment that contained the calling procedure. The RET instruction restores
the values of the CS and EIP registers for the calling procedure from the stack.

6.14.3. Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and IRET (see “Software Interrupts”
on page 6-31) can also call and return from interrupt and exception handler procedures that are
located in a code segment other than the current code segment. With these instructions, however,
the switching of code segments is handled transparently from the application program.

6.14.4. Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
ES), LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer
using SS) load a far pointer from memory into a segment register and a general-purpose general
register. The segment selector part of the far pointer is loaded into the selected segment register
and the offset is loaded into the selected general-purpose register.

6-37

INSTRUCTION SET SUMMARY

6.15. MISCELLANEOUS INSTRUCTIONS

The following instructions perform miscellaneous operations that are of interest to applications
programmers.

6.15.1. Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruc-
tion can interpret any of the Pentium Pro processor’s addressing modes and can perform any
indexing or scaling that may be needed. It is especially useful for initializing the ESI or EDI
registers before the execution of string instructions or for initializing the EBX register before an
XLAT instruction.

6.15.2. Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with
a byte read from a translation table in memory. The initial value in the AL register is interpreted
as an unsigned index into the translation table. This index is added to the contents of the EBX
register (which contains the base address of the table) to calculate the address of the table entry.
These instructions are used for applications such as converting character codes from one
alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equiv-
alent in a table).

6.15.3. Processor Identification Instruction

The CPUID (processor identification) instruction provides information about the processor on
which the instruction is executed. To obtain processor information, a value of from 0 to 2 is
loaded in the EAX register and then the CPUID instruction is executed. The resulting processor
information is placed in the EAX, EBX, ECX, and EDX registers. Table 6-5 on page 6-37 shows
the information that is provided depending on the value initially entered in the EAX register. See
“Processor Identification” on page 9-1 for detailed information on the output of the CPUID
instruction.

Table 6-5. Information Provided by the CPUID Instruction

Initial EAX
Value Information Provided about the Processor

0 Maximum CPUID input value.
Vendor identification string (“GenuineIntel”).

1 Version information (family ID, model ID, and stepping ID).
Feature information (identifies the feature set for the processor model).

2 Cache information (about the processor’s internal cache memory).

6-38

INSTRUCTION SET SUMMARY

6.15.4. No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instruction,
but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the
opcode for this instruction for this function. The instruction is provided to allow software to test
an invalid opcode exception handler.

7-1

CHAPTER 7
FLOATING-POINT UNIT

The Pentium Pro processor’s Floating-Point Unit (FPU) provides high-performance floating-
point processing capabilities. It supports the real, integer, and BCD-integer data types and the
floating-point processing algorithms and exception handling architecture defined in the IEEE
754 and 854 Standards for Floating-Point Arithmetic. The FPU executes instructions from the
processor’s normal instruction stream and greatly improves the efficiency of the processor in
handling the types of high-precision floating-point processing operations commonly found in
scientific, engineering, and business applications.

This chapter describes the data types that the FPU operates on, the FPU’s execution environ-
ment, and the FPU-specific instruction set. Detailed descriptions of the FPU instructions are
given in Chapter 11, Instruction Set Reference.

7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH
COPROCESSORS

The Pentium Pro processor’s FPU extends the floating-point processing capability of earlier
math coprocessors in the Intel Architecture family of processors. It is fully compatible with the
Intel486 DX and Pentium processors.

The Pentium Pro processor’s FPU offers several new instructions to improve processing
throughput. The FCMOVcc (floating-point conditional move) instructions perform a floating-
point move operation based on the state of the status flags in the EFLAGS register (see
“FCMOVcc—Floating-Point Conditional Move” on page 11-106). The FCOMI (floating-point
compare and set EFLAGS) instructions set the status flags in the EFLAGS register according to
the results of a comparison of two floating-point values (see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111).

7.2. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the Pentium
Pro processor’s FPU. It also introduces terms such as normalized numbers, denormalized
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar with
floating-point processing techniques and the IEEE standards may wish to skip this section.

7.2.1. Real Number System

As shown in Figure 7-1 on page 7-2, the real-number system comprises the continuum of real
numbers from minus infinity (−∞) to plus infinity (+∞).

7-2

FLOATING-POINT UNIT

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number calculations. As shown at the bottom of
Figure 7-1, the subset of real numbers that a particular FPU supports represents an approxima-
tion of the real number system. The range and precision of this real-number subset is determined
by the format that the FPU uses to represent real numbers.

7.2.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers or FPUs typically
represent real numbers in a binary floating-point format. In this format, a real number has three
parts: a sign, a significand, and an exponent. Figure 7-2 on page 7-3 shows the binary floating-
point format that the Pentium Pro processor uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The
significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary frac-
tion. The J-bit is often not represented, but instead is an implied value. The exponent is a binary
integer that represents the base-2 power that the significand is raised to.

Figure 7-1. Binary Real Number System

Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

ςς ςς
-100 -10 -1 0 1 10 100

ςς ςς
-100 -10 -1 0 1 10 100

7-3

FLOATING-POINT UNIT

Table 7-1 shows how the real number 178.125 (in ordinary decimal format) is stored in floating-
point format. The table lists a progression of real number notations that leads to the format that
the FPU uses. In this format, the binary real number is normalized and the exponent is biased
(see “Normalized Numbers” on page 7-3 and “Biased Exponent” on page 7-4).

7.2.2.1. NORMALIZED NUMBERS

In most cases, the FPU represents real numbers in normalized form. This means that except for
zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

Figure 7-2. Binary Floating-Point Format

Table 7-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
 1. (Implied)

Sign

Integer or J-Bit

Exponent Significand

Fraction

7-4

FLOATING-POINT UNIT

7.2.2.2. BIASED EXPONENT

The FPU represents exponents in a biased form. This means that a constant is added to the actual
exponent so that the biased exponent is always a positive number. The value of the biasing
constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized number can
be reciprocated without overflow.

(See “Real Numbers” on page 7-23 for a list of the biasing constants that the FPU uses for the
various sizes of real data-types.)

7.2.3. Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the FPU’s floating-point format.
These numbers and values are generally divided into the following classes:

• Signed zeros.

• Denormalized finite numbers.

• Normalized finite numbers.

• Signed infinities.

• NaNs.

• Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 7-3 on page 7-5 shows how the encodings for these numbers and non-numbers fit into
the real number continuum. The encodings shown here are for the IEEE single-precision (32-bit)
format, where the term “S” indicates the sign bit, “E” the biased exponent, and “F” the fraction.
(The exponent values are given in decimal.)

The FPU can operate on and/or return any of these values, depending on the type of computation
being performed. The following sections describe these number and non-number classes.

7.2.3.1. SIGNED ZEROS

Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of an ∞ that has been reciprocated.

7-5

FLOATING-POINT UNIT

7.2.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and ∞. In the single-real format shown in Figure
7-3 on page 7-5, this group of numbers includes all the numbers with biased exponents ranging
from 1 to 25410 (unbiased, the exponent range is from −12610 to +12710).

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented. However, this denormalization causes a loss of preci-
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an FPU normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 7-2
on page 7-6 gives an example of gradual underflow in the denormalization process. Here the
single-real format is being used, so the minimum exponent (unbiased) is −12610. The true result

Figure 7-3. Real Numbers and NaNs

1 0 0
S E F

−0

1 0 −Denormalized
Finite

NaN

1 1...254 Any Value −Normalized
Finite

1 255 0 −∞

255 1.0XX2 −SNaN

255 1.1XX −QNaN

Notes
1. Sign bit ignored
2. Fractions must be non-zero

0 0 0
S E F

0 0

NaN

0 1...254 Any Value

0 255 0

X1 255 1.0XX2

255 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+∞

+SNaN

+QNaN X1

X1

X1

Real Number and NaN Encodings For 32-bit Floating-point Format

−Denormalized Finite

−Normalized Finite −0−∞ +∞
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2

7-6

FLOATING-POINT UNIT

in this example requires an exponent of −12910 in order to have a normalized number. Since
−12910 is beyond the allowable exponent range, the result is denormalized by inserting leading
zeros until the minimum exponent of −12610 is reached.

Note
* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The FPU deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

When a denormal number in single- or double-real format is used as a source operand and the
denormal exception is masked, the FPU automatically normalizes the number when it is
converted to extended-real format.

7.2.3.3. SIGNED INFINITIES

The two infinities, +∞ and −∞, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero significand (fraction and integer bit) and the maximum biased exponent allowed in the
specified format (for example, 25510 for the single-real format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that is, –∞ is less than any finite number and +∞ is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

Table 7-2. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

7-7

FLOATING-POINT UNIT

7.2.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3 on
page 7-5, the encoding space for NaNs in the FPU floating-point formats is shown above the
ends of the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an invalid-operation excep-
tion whenever they appear as operands in arithmetic operations. Exceptions are discussed in
“Floating-Point Exception Handling” on page 7-40

See “Operating on NaNs” on page 7-39 for detailed information on how the FPU handles NaNs.

7.2.4. Indefinite

For each FPU data type, one unique encoding is reserved for representing the special value
indefinite. For example, when operating on real values, the real indefinite value is a QNaN (see
“Real Numbers” on page 7-23). The FPU produces indefinite values as responses to a masked
floating-point exceptions.

7.3. FPU ARCHITECTURE

From an abstract, architectural view, the FPU is a coprocessor that operates in parallel with the
processor’s integer unit (see Figure 7-4 on page 7-7). The FPU gets its instructions from the
same instruction decoder and sequencer as the integer unit and shares the system bus with the
integer unit. Other than these connections, the integer unit and FPU operate independently and
in parallel. (The actual microarchitecture of the Pentium Pro processor has two integer units and
two FPUs, see “Dispatch/Execute Unit” on page 2-10.)

Figure 7-4. Relationship Between the Integer Unit and the FPU

Instruction

Data Bus

Decoder and
Sequencer

FPUInteger
Unit

7-8

FLOATING-POINT UNIT

The instruction execution environment of the FPU (see Figure 7-5 on page 7-8) consists of 8
data registers (called the FPU data registers) and the following special-purpose registers:

• The status register.

• The control register.

• The tag word register.

• Instruction pointer register.

• Last operand (data pointer) register.

• Opcode register.

These registers are described in the following sections.

7.3.1. The FPU Data Registers

The FPU data registers (shown in Figure 7-5 on page 7-8) consist of eight 80-bit registers.
Values are stored in these registers in the extended-real format shown in Figure 7-17 on
page 7-22. When real, integer, or packed BCD integer values are loaded from memory into any
of these registers, the values are automatically converted into extended-real format (see
“Floating-Point Data Types and Formats” on page 7-22). Computation results are subsequently
converted back into one of the FPU data formats when they are transferred back into memory
from any of the FPU registers.

Figure 7-5. FPU Execution Environment

079

R7

R6

R5

R4

R3

R2

R1

R0

FPU Data Registers

Exponent Significand

78 64 63

15
Control
Register

0

Status
Register

Tag
Register

047

Instruction Pointer

Data Pointer

10

Opcode

0

Sign

7-9

FLOATING-POINT UNIT

The FPU instructions treat the eight FPU data registers as a register stack (see Figure 7-6 on
page 7-9). All addressing of the data registers is relative to the register on the top of the stack.
The register number of the current top-of-stack register is stored in the TOP (stack TOP) field
in the FPU status word. Load operations decrement TOP by one and load a value into the new
top-of-stack register, and store operations store the value from the current TOP register in
memory and then increment TOP by one. (For the FPU, a load operation is equivalent to a push
and a store operation is equivalent to a pop.)

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicate when wraparound might
cause an unsaved value to be overwritten (see “Stack Overflow or Underflow Exception (#IS)”
on page 7-44).

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 7-7 on page 7-10 shows an example of how the stack structure of the FPU registers and
instructions are typically used to perform a series of computations. Here, a two-dimensional dot
product is computed, as follows:

1. The first instruction (FLD value1_ptr) decrements the stack register pointer (TOP) and
loads the value 5.6 from memory into ST(0). The result of this operation is shown in snap-
shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

Figure 7-6. FPU Data Register Stack

7

6

5

4

3

2

1

0

FPU Data Register Stack

ST(2)

ST(1)

ST(0)

Top

011B

Growth
Stack

7-10

FLOATING-POINT UNIT

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

The style of programming demonstrated in this example, is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange FPU register contents) instruction can be used to streamline a computation.

7.3.1.1. PARAMETER PASSING WITH THE FPU REGISTER STACK

Like the general-purpose registers in the processor’s integer unit, the contents of the FPU data
registers are unaffected by procedure calls, or in other words, the values are maintained across
procedure boundaries. A calling procedure can thus use the FPU data registers (as well as the
procedure stack) for passing parameter between procedures. The called procedure can reference
parameters passed through the register stack using the current stack register pointer (TOP) and
the ST(0) and ST(i) nomenclature.

Figure 7-7. Example FPU Dot Product Computation

(a)

R7

R6

R5

R4

R3

R2

R1

R0

Computation

ST(0)5.6

(b)

R7

R6

R5

R4

R3

R2

R1

R0

ST(0)13.44

(c)

R7

R6

R5

R4

R3

R2

R1

R0

ST(1)

ST(0)

13.44

(d)

R7

R6

R5

R4

R3

R2

R1

R0

ST(1)

ST(0)39.14

13.44

52.58

Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD value1_ptr ;(a) value1=5.6
FMUL value2_ptr ;(b) value2=2.4
FLD value3_ptr ; value3=3.8
FMUL value4_ptr ;(c)value4=10.3
FADD ST(1) ;(d)

7-11

FLOATING-POINT UNIT

7.3.2. FPU Status Register

The 16-bit FPU status register (see in Figure 7-8 on page 7-11) indicates the current state of the
FPU. The flags in the FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The FPU
sets the flags in this register to show the results of operations.

The contents of the FPU status register (referred to as the FPU status word) can be stored in
memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, and FSAVE/FNSAVE instructions.
It can also be stored in the AX register of the integer unit, using the FSTSW/FNSTSW
instructions.

7.3.2.1. TOP OF STACK (TOP) POINTER

A pointer to the FPU data register that is currently at the top of the FPU register stack is
contained in bits 11 through 13 of the FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See “The FPU Data Regis-
ters” on page 7-8 for more information about the TOP pointer.

7.3.2.2. CONDITION CODE FLAGS

The four FPU condition code flags (C0 through C3) indicate the results of floating-point
comparison and arithmetic operations. Table 7-3 on page 7-12 summarizes the manner in which
the floating-point instructions set the condition code flags. These condition code bits are used
principally for conditional branching and for storage of information used in exception handling
(see “Branching and Conditional Moves on FPU Condition Codes” on page 7-13).

Figure 7-8. FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B I
E

P
E

O
E

U
E

Z
E

D
ETOP

Top of Stack Pointer

Exception Flags
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormalized Operand
 Invalid Operation

Stack Fault
Error Summary Status

Condition
 Code

C
2

C
1

C
0

E
S

S
F

C
3

7-12

FLOATING-POINT UNIT

As shown in Table 7-3 on page 7-12, the C1 condition code flag is used for a variety of functions.
When both the IE and SF flags in the FPU status word are set, indicating a stack overflow or
underflow exception (#IS), the C1 flag distinguishes between overflow (C1=1) and underflow
(C1=0). When the PE flag in the status word is set, indicating an inexact (rounded) result, the
C1 flag is set to 1 if the last rounding by the instruction was upward. The FXAM instruction sets
C1 to the sign of the value being examined.

Table 7-3. FPU Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP,
FICOM, FICOMP, FTST,
FUCOM, FUCOMP,
FUCOMPP

Result of Comparison Operands
are not
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

Undefined. (These instructions set the
status flags in the EFLAGS register.)

#IS

FXAM Operand class Sign

FPREM, FPREM1 Q2 Q1 0=reduction
complete
1=reduction
incomplete

Q0 or #IS

F2XM1, FADD, FADDP,
FBSTP, FCMOVcc, FIADD,
FDIV, FDIVP, FDIVR,
FDIVRP, FIDIV, FIDIVR,
FIMUL, FIST, FISTP, FISUB,
FISUBR,FMUL, FMULP,
FPATAN, FRNDINT, FSCALE,
FST, FSTP, FSUB, FSUBP,
FSUBR, FSUBRP,FSQRT,
FYL2X, FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS,
FPTAN

Undefined 1=source
operand out of
range.

Roundup or #IS
(Undefined if
C2=1)

FABS, FBLD, FCHS,
FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. real), FXCH, FXTRACT

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW,
FCLEX/FNCLEX, FNOP,
FSTCW/FNSTCW,
FSTENV/FNSTENV,
FSTSW/FNSTSW,

Undefined

FINIT/FNINIT,
FSAVE/FNSAVE

0 0 0 0

7-13

FLOATING-POINT UNIT

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the C0, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, Q1, and Q0, respectively. See “FPREM—Partial Remainder” on page 11-149 or
“FPREM1—Partial Remainder” on page 11-152 for more information on how these instructions
use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range of ±263.

Where the state of the condition code flags are listed as undefined in Table 7-3, do not rely on
any specific value in these flags.

7.3.2.3. EXCEPTION FLAGS

The 6 exception flags (bits 0 through 5) of the status word and the exception summary status
(ES) flag (bit 7) indicate that one or more floating-point exceptions has been detected since the
bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are
described in detail in “Floating-Point Exception Handling” on page 7-40. Each of the exception
flags can be masked by an exception mask bit in the FPU control word (see “FPU Control Word”
on page 7-15). The ES flag is set when any of the unmasked exception bits are set. The exception
flags are “sticky” bits, meaning that once set, they remain set until explicitly cleared. They can
be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing
the FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by overwriting the flags
with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

7.3.2.4. STACK FAULT FLAG

The stack fault flag (bit 6 of the FPU status word) indicates that stack overflow or stack under-
flow has occurred. The FPU explicitly sets the SF flag when it detects a stack overflow or under-
flow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition. When this flag is set, the condition code flag C1 indicates the nature of the
fault: overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that
after it is set, the processor does not clear it until it is explicitly instructed to do so (for example,
by an FINIT/FNINIT or FSAVE/FNSAVE instruction).

See “FPU Tag Word” on page 7-18 for more information on FPU stack faults.

7.3.3. Branching and Conditional Moves on FPU Condition
Codes

The Pentium Pro processor supports two mechanisms for branching and performing conditional
moves according to comparisons of two floating-point values. These mechanism are referred to
here as the “old mechanism” and the “new mechanism.”

7-14

FLOATING-POINT UNIT

The old mechanism is available in FPU’s prior to the Pentium Pro processor and in the Pentium
Pro processor. This mechanism uses the floating-point compare instructions (FCOM, FCOMP,
FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point values and
set the condition code flags (C0 through C3) according to the results. The contents of the condi-
tion code flags are then copied into the status flags of the EFLAGS register using a two step
process (see Figure 7-9 on page 7-14):

1. The FSTSW AX instruction moves the FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

The new mechanism is available only in the Pentium Pro processor. Using this mechanism, the
new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and
FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags in the EFLAGS
register directly. A single instruction thus replaces a three instructions, using the old mechanism.

Note also that the FCMOVcc instructions (also new in the Pentium Pro processor) allow condi-
tional moves of floating-point values (values in the FPU data registers) based on the setting of
the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the need
for an IF statement to perform conditional moves of floating-point values.

Figure 7-9. Moving the FPU Condition Codes to the EFLAGS Register

0

Condition
Code

Status
Flag

C0
C1
C2
C3

CF
(none)

PF
ZF

C
F1P

F
Z
F

731 EFLAGS Register

0

C
2

C
1

C
3

AX Register

0
C

15

0

C
2

C
1

C
3

FPU Status Word

0
C

15

FSTSW AX Instruction

SAHF Instruction

7-15

FLOATING-POINT UNIT

7.3.4. FPU Control Word

The 16-bit FPU control word (see in Figure 7-10 on page 7-15) controls the precision of the FPU
and rounding method used. It also contains the exception-flag mask bits. The control word is
cached in the FPU in the FPU control register. The contents of this register can be loaded with
the FLDCW instruction and stored in memory with the FSTCW/FNSTCW instructions.

When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the
FPU control word is set to 037FH, which masks all floating-point exceptions, sets rounding to
nearest, and sets the FPU precision to 64 bits.

7.3.4.1. EXCEPTION-FLAG MASKS

The exception-flag mask bits (bits 0 through 5 of the FPU control word) mask the 6 exception
flags in the FPU status word (also bits 0 through 5). When one of these mask bits is set, its corre-
sponding floating-point exception is inhibited from being generated.

7.3.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the FPU control word) determines the precision
(64, 53, or 24 bits) of floating-point calculations made by the FPU (see Table 7-4 on page 7-16).
The default precision is extended precision, which uses the full 64-bit significand available with
the extended-real format of the FPU data registers. This setting is best suited for most applica-
tions, because it allows applications to take full advantage of the precision of the extended-real
format.

Figure 7-10. FPU Control Word

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

X I
M

P
M

O
M

U
M

Z
M

D
MRC PC

Infinity Control
Rounding Control
Precision Control

Exception Masks
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormalized Operand
 Invalid Operation

Reserved

7-16

FLOATING-POINT UNIT

Note
* Includes the implied integer bit.

The double precision and single precision settings, reduce the size of the significand to 53 bits
and 24 bits, respectively. These settings are provided to support the IEEE standard and to
provide compatibility with the earlier Intel Architecture NPXs. Using these settings nullifies the
advantages of the extended-real format's 64-bit significand length. When reduced precision is
specified, the rounding of the significand value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-point instructions:
FADD, FADDP, FSUB, FSUBP, FSUBR, FSUBRP, FMUL, FMULP, FDIV, FDIVP, FDIVR,
FDIVRP, and FSQRT.

7.3.4.3. ROUNDING CONTROL FIELD

The rounding-control (RC) field of the FPU control register (bits 10 and 11) controls how the
results of floating-point instructions are rounded. Four rounding modes are supported (see Table
7-5 on page 7-16): round to nearest, round up, round down, and round toward zero. Round to
nearest is the default rounding mode and is suitable for most applications. It provides the most
accurate and statistically unbiased estimate of the true result.

The round up and round down modes are termed directed rounding and can be used to imple-
ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the
true result of a multistep computation, when the intermediate results of the computation are
subject to rounding.

Table 7-4. Precision Control Field (PC)

Precision PC Field

Single Precision (24-Bits*) 00B

Reserved 01B

Double Precision (53-Bits*) 10B

Extended Precision (64-Bits) 11B

Table 7-5. Rounding Control Fi eld (RC)

Rounding
Mode

RC Field
Setting Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values
are equally close, the result is the even value (that is, the one with the
least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is close to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is close to but no less than he infinitely precise result.

Round toward
zero (Truncate)

11B Rounded result is close to but no greater in absolute value than the
infinitely precise result.

7-17

FLOATING-POINT UNIT

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
performing integer arithmetic with the FPU.

Whenever possible, the FPU produces an infinitely precise result in the destination format
(single, double, or extended real). However, it is often the case that the infinitely precise result
of an arithmetic or store operation cannot be encoded exactly in the format of the destination
operand. For example, the following value (a) has a 24-bit fraction. The least-significant bit of
this fraction (the underlined bit) cannot be encoded exactly in the single-real format (which has
only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the FPU first selects two representable fractions b and c that most
closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The FPU then sets the result to b or to c according to the rounding mode selected in the RC field.
Rounding introduces an error in a result that is less than one unit in the last place to which the
result is rounded.

The rounded result is called the inexact result. When the FPU produces an inexact result, the
floating-point precision (inexact) flag (PE) is set in the FPU status word.

When the infinitely precise result is between the largest positive finite value allowed in a partic-
ular format and +∞, the FPU rounds the result as shown in Table 7-6 on page 7-17.

When the infinitely precise result is between the largest negative finite value allowed in a partic-
ular format and −∞, the FPU rounds the result as shown in Table 7-7 on page 7-17.

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

Table 7-6. Rounding of Positive Numbers

Rounding Mode Result

Rounding to nearest (even) +∞

Rounding toward zero (Truncate) Maximum, positive finite value

Rounding up (toward +∞) +∞

Rounding down) (toward −∞) Maximum, positive finite value

Table 7-7. Rounding of Negative Numbers

Rounding Mode Result

Rounding to nearest (even) -∞

Rounding toward zero (Truncate) Maximum, negative finite value

Rounding up (toward +∞) Maximum, negative finite value

Rounding down) (toward −∞) -∞

7-18

FLOATING-POINT UNIT

7.3.5. Infinity Control Flag

The infinity control flag (bit 12 of the FPU control word) is provided for compatibility with the
Intel287™ Math Coprocessor; it is not meaningful for the Pentium Pro processor FPU or for the
Pentium FPU, the Intel486 FPU, or Intel387™ NPX. See “Signed Infinities” on page 7-6 for
information on how the Pentium Pro processor handles infinity values.

7.3.6. FPU Tag Word

The 16-bit tag word (see in Figure 7-11 on page 7-18) indicates the contents of each the 8 regis-
ters in the FPU data-register stack (one 2-bit tag per register). The tag codes indicate whether a
register contains a valid number, zero, or a special floating-point number (NaN, infinity,
denormal, or unsupported format), or whether it is empty. The FPU tag word is cached in the
FPU in the FPU tag word register. When the FPU is initialized with either an FINIT/FNINIT or
FSAVE/FNSAVE instruction, the FPU tag word is set to FFFFH, which marks all the FPU data
registers as empty.
.

Each tag in the FPU tag word corresponds to a physical register (numbers 0 through 7). The
current top-of-stack (TOP) pointer stored in the FPU status word can be used to associate tags
with registers relative to ST(0).

The FPU uses the tag values to detect stack overflow and underflow conditions. Stack overflow
occurs when the TOP pointer is decremented (due to a register load or push operation) to point
to a non-empty register. Stack underflow occurs when the TOP pointer is incremented (due to a
save or pop operation) to point to an empty register or when an empty register is also referenced
as a source operand. A non-empty register is defined as a register containing a zero (01), a valid
value (00), or an special (10) value.

Application programs and exception handlers can use this tag information to check the contents
of an FPU data register without performing complex decoding of the actual data in the register.
To read the tag register, it must be stored in memory using either the FSTENV/FNSTENV or
FSAVE/FNSAVE instructions. The location of the tag word in memory after being saved with
one of these instructions is shown in Figure 7-13 through Figure 7-14.

Figure 7-11. FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty

7-19

FLOATING-POINT UNIT

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR
instructions load an image of the tag register into the FPU; however, the FPU uses those tag
values only to determine if the data registers are empty (11B) or non-empty (00B, 01B, or 10B).
If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (11B); if the tag register image indicates that the data register is
non-empty, the FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action prevents a program from setting the values in the tag register to incor-
rectly represent the actual contents of non-empty data registers.

7.3.7. The Floating-Point Instruction and Data Pointers

The FPU stores pointers to the instruction and data (operand) for the last non-control instruction
executed in two 48-bit registers: the FPU instruction pointer and FPU data pointer registers (see
Figure 7-5 on page 7-8). (This information is saved to provide state information for exception
handlers.)

The contents of the FPU instruction and data pointer registers remain unchanged when any of
the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and
WAIT/FWAIT) are executed. The contents of the data register are undefined if the prior non-
control instruction did not have a memory operand.

The pointers stored in the FPU instruction and data pointer registers consist of an offset (stored
in bits 0 through 31) and a segment selector (stored in bits 32 through 47).

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT,
FSAVE/FNSAVE and FRSTOR instructions. The FINIT/FNINIT and FSAVE/FNSAVE instruc-
tions clear these registers.

For all the Intel Architecture FPUs and NPXs except the 8087, the FPU instruction pointer
points to any prefixes that preceded the instruction. For the 8087, the instruction pointer points
only to the actual opcode.

7.3.8. Last Instruction Opcode

The FPU stores the opcode of the last non-control instruction executed in an 11-bit FPU opcode
register. (This information provides state information for exception handlers.) Only the first and
second opcode bytes (after all prefixes) are stored in the FPU opcode register. Figure 7-12 on
page 7-20 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte
are the same for all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored
in the opcode register.

7-20

FLOATING-POINT UNIT

7.3.9. Saving the FPU’s State

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENV/FNSTENV instruction saves the contents of the status, control, tag, instruction
pointer, data pointer, and opcode registers. The FSAVE instruction stores that information plus
the contents of the FPU data registers.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 7-13 through 7-16. In virtual-8086 mode, the real-address mode
formats are used.

Figure 7-12. Contents of FPU Opcode Registers

Figure 7-13. Protected- Mode FPU St ate Image in Memory, 32-Bit Format

0

FPU Opcode Register

10

0
2nd Instruction Byte

70
1st Instruction Byte

7 2

78

031

0

4

8

12

16

20

24

32-bit Protected Mode Format

Control Word

15

Opcode 10...00

Status Word

Tag Word

CS Selector

Operand Selector

Data Operand Offset

0 0 0 0

IP Offset

Reserved

16

7-21

FLOATING-POINT UNIT

Figure 7-14. Real Mode FPU State Image in Memory, 32-Bit Format

Figure 7-15. Protected-Mode FPU State Image in Memory, 16-Bit Format

Figure 7-16. Real Mode FPU State Image in Memory, 16-Bit Format

031

0

4

8

12

16

20

24

32-bit Real-address Mode Format

Control Word

15

Operand Pointer 31...16

Instruction Pointer 31...16

Status Word

Tag Word

Opcode 10...00

0 0 0 0 0 0 0 0 0 0 0 0

Operand Pointer 15...00

0 0 0 0

Instruction Pointer 15...00

0 0 0 0

Reserved

0

Reserved

16

0

0

2

4

6

8

10

12

16-bit Protected Mode Format

Control Word

15

Status Word

Tag Word

CS Selector

Operand Selector

Operand Offset

IP Offset

0

0

2

4

6

8

10

12

16-bit Real-address Mode and

Control Word

15

Status Word

Tag Word

Virtual 8086 Mode Format

0 0 0 0 0 0 0 0 0 0 0 0

Opcode 10...000

Instruction Pointer 15...00

IP 19...16

DP 19...16

Operand Pointer 15...00

7-22

FLOATING-POINT UNIT

The FLDENV and FRSTOR instructions allow FPU state information to be loaded from
memory into the FPU. Here, the FLDENV instruction loads only the status, control, tag, instruc-
tion pointer, data pointer, and opcode registers, and the FRSTOR instruction loads all the FPU
registers, including the data registers.

7.4. FLOATING-POINT DATA TYPES AND FORMATS

The Pentium Pro processor’s FPU recognizes and operates on 7 data types, divided into three
groups: reals, integers, and packed BCD integers. Figure 7-17 on page 7-22 shows the data
formats for each of the FPU data types. Table 7-8 on page 7-23 gives the length, precision, and
approximate normalized range that can be represented of each FPU data type. Denormal values
are also supported in each of the real types, as required by IEEE Std. 854.

With the exception of the 80-bit extended-real format, all of these data types exist in memory
only. When they are loaded into FPU data registers, they are converted into extended-real format
and operated on in that format.

Figure 7-17. Floating-Point Unit Data Type Formats

0

Packed BCD

79

D0

0

Long Integer

63

4 Bits = 1 BCD Digit

0

Short Integer

31

0

Word Integer

15

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71

X

62

14

30

0

Extended Real

79

Sign

78 6463

0

Double Real

63 62

0

Single Real

3130 23 22

FractionExp.Sign

Implied Integer

Implied Integer

Sign Exponent Fraction
52 51

FractionExponent

62 Integer

Sign

Sign

Sign

7-23

FLOATING-POINT UNIT

When stored in memory, the least significant byte an FPU data-type value is stored at the initial
address specified for the value. Successive bytes from the value are then stored in successively
higher addresses in memory. The floating-point instructions load and store memory operands
using only the initial address of the operand.

7.4.1. Real Numbers

The FPU’s three real data types (single-real, double-real, and extended-real) correspond directly
to the single-precision, double-precision, and double-extended-precision formats in the IEEE
standard. The extended-precision format is the format used by the data registers in the FPU.
Table 7-8 on page 7-23 gives the precision and range of these data types and Figure 7-17 on
page 7-22 gives the formats.

For the single-real and double-real formats, only the fraction part of the significand is encoded.
The integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For
the extended-real format, the integer is contained in bit 63, and the most-significant fraction bit
is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs,
and to 0 for zero and denormalized numbers.

The exponent of each real data type is encoded in biased format. The biasing constant is 127 for
the single-real format, 1023 for the double-real format, and 16,383 for the extended-real format.

Table 7-9 on page 7-25 shows the encodings for all the classes of real numbers (that is, zero,
denormalized-finite, normalized-finite, and ∞) and NaNs for each of the three real data-types. It
also gives the format for the real indefinite value.

When storing real values in memory, single-real values are stored in 4 consecutive bytes in
memory; double-real values are stored in 8 consecutive bytes; and extended-real values are
stored in 10 consecutive bytes.

Table 7-8. Length, Precision, and Range of FPU Data Types

Data Type Length Precision
(Bits)

Approximate Normalized Range

Binary Decimal

Binary Real
 Single real 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

 Double real 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

 Extended real 80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932

Binary Integer
 Word integer 16 15 –215 to 215 – 1 –32,768 to 32,767

 Short integer 32 31 –231 to 231 – 1 –2.14 × 109 to 2.14 × 109

 Long integer 64 63 –263 to 263 – 1 –9.22 × 1018 to 9.22 × 1018

Packed BCD
Integers

80 18 (decimal
digits)

Not Pertinent (-1018 + 1) to (1018 – 1)

7-24

FLOATING-POINT UNIT

As a general rule, values should be stored in memory in double-real format. This format
provides sufficient range and precision to return correct results with a minimum of programmer
attention. The single-real format is appropriate for applications that are constrained by memory;
however, it provides less precision and a greater chance of overflow. The single-real format is
also useful for debugging algorithms, because rounding problems will manifest themselves
more quickly in this format. The extended-real format is normally reserved for holding interme-
diate results in the FPU registers and constants. Its extra length is designed to shield final results
from the effects of rounding and overflow/underflow in intermediate calculations. However,
when an application requires the maximum range and precision of the FPU (for data storage,
computations, and results), values can be stored in memory in extended-real format.

The real indefinite value is a QNaN encoding that is stored by several floating-point instructions
in response to a masked floating-point invalid-operation exception (see Table 7-20 on
page 7-46).

7-25

FLOATING-POINT UNIT

Notes
1. Integer bit is implied and not stored for single-real and double-real formats.
2. The fraction for SNaN encodings must be non-zero.

7.4.2. Binary Integers

The FPU’s three binary integer data types (word, short, and long) have identical formats, except
for length. Table 7-8 on page 7-23 gives the precision and range of these data types and Figure
7-17 on page 7-22 gives the formats. Table 7-10 on page 7-26 gives the encodings of the three
binary integer types.

Table 7-9. Real Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer 1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

−Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

-∞ 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite
(QNaN)

1 11..11 1 10..00

Single-Real:
Double-Real:
Extended-Real

← 8 Bits →
← 11 Bits →
← 15 Bits →

← 23 Bits →
← 52 Bits →
← 63 Bits →

7-26

FLOATING-POINT UNIT

The most significant bit of each format is the sign bit (0 for positive and 1 for negative). Nega-
tive values are represented in standard two's complement notation. The quantity zero is repre-
sented with all bits (including the sign bit) set to zero. Note that the FPU’s word-integer data
type is identical to the word-integer data type used by the processor’s integer unit and the short-
integer format is identical to the integer unit’s doubleword-integer data type.

Word-integer values are stored in 2 consecutive bytes in memory; short-integer values are stored
in 4 consecutive bytes; and long-integer values are stored in 8 consecutive bytes. When loaded
into the FPU’s data registers, all the binary integers are exactly representable in the extended-
real format.

The binary integer encoding 100..00B represents either of two things, depending on the circum-
stances of its use:

• The largest negative number supported by the format (–215, –231, or –263).

• The integer indefinite value.

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruc-
tion), the FPU interprets it as the largest negative number representable in the format being used.
If the FPU detects an invalid operation when storing an integer value in memory with an
FIST/FISTP instruction and the invalid-operation exception is masked, the FPU stores the
integer indefinite encoding in the destination operand as a masked response to the exception. In
situations where the origin of a value with this encoding may be ambiguous, the invalid-opera-
tion exception flag can be examined to see if the value was produced as a response to an
exception.

Table 7-10. Binary Integer Encodings

Class Sign Magnitude

Positive Largest 0 11..11

. .

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

. .

. .

Largest 1 00..00

Integer Indefinite 1 00..00

Word Integer:
Short Integer:
Long Integer:

← 15 bits →
← 31 Bits →
← 63 Bits →

7-27

FLOATING-POINT UNIT

If the integer indefinite is stored in memory and is later loaded back into an FPU data register,
it is interpreted as the largest negative number supported by the format.

7.4.3. Decimal Integers

Decimal integers are stored in a 10-byte, packed BCD format. Table 7-8 on page 7-23 gives the
precision and range of this data type and Figure 7-17 on page 7-22 shows the format. In this
format, the first 9 bytes hold 18 BCD digits, 2 digits per byte (see “BCD Integers” on page 5-4).
The least-significant digit is contained in the lower half-byte of byte 0 and the most-significant
digit is contained in the upper half-byte of byte 9. The most significant bit of byte 10 contains
the sign bit (0 = positive and 1 = negative). (Bits 0 through 6 of byte 10 are don’t care bits.)
Negative decimal integers are not stored in two's complement form; they are distinguished from
positive decimal integers only by the sign bit.

Table 7-11 on page 7-27 gives the possible encodings of value in the decimal integer data type.

NOTE:
* UUUU means bit values are undefined and may contain any value.

The decimal integer format exists in memory only. When a decimal integer is loaded in a data
register in the FPU, it is automatically converted to the extended-real format. All decimal inte-
gers are exactly representable in extended-real format.

Table 7-11. Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive
 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

Smallest

0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative
 Zero 1 0000000 0000 0000 0000 0000 ... 0000

Smallest

1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Decimal
Integer
Indefinite

1 1111111 1111 1111 UUUU* UUUU ... UUUU

← 1 byte → ← 9 bytes →

7-28

FLOATING-POINT UNIT

The packed decimal indefinite encoding is stored by the FBSTP instruction in response to a
masked floating-point invalid-operation exception. Attempting to load this value with the FBLD
instruction produces an undefined result.

7.4.4. Unsupported Extended-Real Encodings

The extended-real format permits many encodings that do not fall into any of the categories
shown in Table 7-9 on page 7-25. Table 7-12 on page 7-29 shows these unsupported encodings.
Some of these encodings were supported by the Intel287 math coprocessor; however, most of
them are not supported by the Intel387 math coprocessor, or the internal FPUs in the Intel486,
Pentium, or Pentium Pro processors. These encodings are no longer supported due to changes
made in the final version of IEEE Std. 754 that eliminated these encodings.

The categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal
numbers are not supported. The Intel387 math coprocessor and the internal FPUs in the
Intel486, Pentium, and Pentium Pro processors generate the invalid-operation exception when
they are encountered as operands.

The encodings formerly known as pseudo-denormal numbers are not generated by the Pentium
Pro processor; however, they are used correctly when encountered as operands. The exponent is
treated as if it were 00..01B and the mantissa is unchanged. The denormal exception is
generated.

7.5. FPU INSTRUCTION SET

The floating-point instruction set available on the Pentium Pro processor’s FPU can be grouped
into six functional categories:

• Data transfer instructions

• Basic arithmetic instructions

• Comparison instructions

• Transcendental instructions

• Load constant instructions

• FPU control instructions

See “Floating-Point Instructions” on page 6-8 for a list of the floating-point instructions by
category.

The following section briefly describes the instructions in each category. Detailed descriptions
of the floating-point instructions are given in Chapter 11, Instruction Set Reference.

7-29

FLOATING-POINT UNIT

7.5.1. Escape (ESC) Instructions

All of the instructions in the FPU instruction set fall into a class of instructions known as escape
(ESC) instructions. All of these instructions have a common opcode format, which is slightly
different from the format used by the integer and operating-system instructions.

7.5.2. FPU Instruction Operands

Most floating-point instructions require one or two operands, which are located on the FPU data-
register stack or in memory. (None of the floating-point instructions accept immediate
operands.)

Table 7-12. Unsupported Extended-Real Encodings

Class Sign Biased Exponent Significand

Integer Fraction

Positive
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling
0
.
0

11..11
.

11..11

0 01..11
.

00..01

Positive Reals Pseudo-infinity 0 11..11 0 00..00

Unnormals
0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative Reals Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals
1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet
1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →

7-30

FLOATING-POINT UNIT

When an operand is located in a data register, it is referenced relative to the ST(0) register (the
register at the top of the register stack), rather than by a physical register number. Often the
ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods available
for the integer and system instructions.

7.5.3. Data Transfer Instructions

The data transfer instructions (see Table 7-13 on page 7-30) perform the following operations:

• Load real, integer, or packed BCD operands from memory into the ST(0) register.

• Store the value in the ST(0) register in memory in real, integer, or packed BCD format.

• Move values between registers in the FPU register stack.

Operands are normally stored in the FPU data registers in extended-real format (see “Precision
Control Field” on page 7-15). The FLD (load real) instruction pushes a real operand from
memory onto the top of the FPU data-register stack. If the operand is in single- or double-real
format, it is automatically converted to extended-real format. This instruction can also be used
to push the value in a selected FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into extended-real
format and pushes the value onto the top of the register stack. The FBLD (load packed decimal)
instruction performs the same load operation for a packed BCD operand in memory.

The FST (store real) and FIST (store integer) instructions store the value in register ST(0) in
memory in the destination format (real or integer, respectively). Again, the format conversion is
carried out automatically.

The FSTP (store real and pop), FISTP (store integer and pop), and FBSTP (store packed decimal
and pop) instructions store the value in the ST(0) registers into memory in the destination format
(real, integer, or packed BCD), then performs a pop operation on the register stack. A pop oper-
ation causes the ST(0) register to be marked empty and the stack pointer (TOP) in the FPU
control work to be incremented by 1. The FSTP instruction can also be used to copy the value
in the ST(0) register to another FPU register [ST(i)].

Table 7-13. Data Transfer Instructions

Real Integer Packed Decimal

FLD Load Real FILD Load Integer FBLD Load Packed
Decimal

FST Store Real FIST Store Integer

FSTP Store Real and
Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register
Contents

FCMOVcc Conditional Move

7-31

FLOATING-POINT UNIT

The FXCH (exchange register contents) instruction exchanges the value in a selected register in
the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack
[ST(i)] to register ST(0). These instructions move the value only if the conditions specified with
a condition code (cc) are satisfied (see Table 7-14 on page 7-31). The conditions being tested
with the FCMOVcc instructions are represented by the status flags in the EFLAGS register. The
condition code mnemonics are appended to the letters “FCMOV” to form the mnemonic for a
FCMOVcc instruction.

Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF
constructions. They also help eliminate branching overhead for IF operations and the possibility
of branch mispredictions by the processor.

NOTE

The FCMOVcc instructions may not be supported on some processors in the
Pentium Pro processor family. Software can check if the FCMOVcc instruc-
tions are supported by checking the processor’s feature information with the
CPUID instruction (see “CPUID—CPU Identification” on page 11-73).

7.5.4. Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the FPU
register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

Table 7-14. Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal

FCMOVBE (CF or ZF)=1 Below or equal

FCMOVNBE (CF or ZF)=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

7-32

FLOATING-POINT UNIT

The constant values have full extended-real precision (64 bits) and are accurate to approximately
19 decimal digits. They are stored internally in a format more precise than extended real. When
loading the constant, the FPU rounds the more precise internal constant according to the RC
(rounding control) field of the FPU control word. See “Pi” on page 7-36 for information on the
π constant.

7.5.5. Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on real numbers.
Where applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add real
FIADD Add integer to real
FSUB/FSUBP Subtract real
FISUB Subtract integer from real
FSUBR/FSUBRP Reverse subtract real
FISUBR Reverse subtract real from integer
FMUL/FMULP Multiply real
FIMUL Multiply integer by real
FDIV/FDIVP Divide real
FIDIV Divide real by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by real
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:

• Two FPU register values.

• A register value and a real or integer value in memory.

Operands in memory can be in single-real, double-real, short-integer, or word-integer format.
They are converted to extended-real format automatically.

Reverse versions of the subtract and divide instructions are provided to foster efficient coding.
For example, the FSUB instruction subtracts the value in a specified FPU register [ST(i)] from
the value in register ST(0); whereas, the FSUBR instruction subtracts the value in ST(0) from
the value in ST(i). The results of both operations are stored in register ST(0). These instructions
eliminate the need to exchange values between register ST(0) and another FPU register to
perform a subtraction or division.

The pop versions of the add, subtract, multiply and divide instructions pop the FPU register
stack following the arithmetic operation.

7-33

FLOATING-POINT UNIT

The FPREM instruction computes the remainder from the division of two operands in the
manner used by the Intel 8087 and Intel287 math coprocessors; the FPREM1 instructions
computes the remainder is the manner specified in the IEEE specification.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instructions rounds a real value to its nearest integer value, according to the
current rounding mode specified in the RC field of the FPU control word. This instruction
performs a function similar to the FIST/FISTP instructions, except that the result is saved in a
real format.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The
FABS instruction produces the absolute value of the source operand. The FCHS instruction
changes the sign of the source operand. The FXTRACT instruction separates the source operand
into its exponent and fraction and stores each value in a register in real format.

7.5.6. Comparison and Classification Instructions

The following instructions compare or classify real values:

FCOM/FCOMP/FCOMPP Compare real and set FPU condition code flags.
FUCOM/FUCOMP/FUCOMPP Unordered compare real and set FPU condition code flags.
FICOM/FICOMP Compare integer and set FPU condition code flags.
FCOMI/FCOMIP Compare real and set EFLAGS status flags.
FUCOMI/FUCOMIP Unordered compare real and set EFLAGS status flags.
FTST Test (compare real with 0.0).
FXAM Examine.

Comparison of real values differ from comparison of integers because real values have four
(rather than three) mutually exclusive relationships: less than, equal, greater than, and
unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an undefined format. This additional relationship is required because, by definition, NaNs
are not numbers, so they cannot have less than, equal, or greater than relationships with other
real values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a real
source operand and set the condition code flags (C0, C2, and C3) in the FPU status word
according to the results (see Table 7-15). If an unordered condition is detected (one or both of
the values is a NaN or in an undefined format), a floating-point invalid-operation exception is
generated.

The pop versions of the instruction pop the FPU register stack once or twice after the comparison
operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP,
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and
FUCOMPP instructions, if an unordered condition is detected because one or both of the oper-
ands is a QNaN, the floating-point invalid-operation exception is not generated.

7-34

FLOATING-POINT UNIT

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instruc-
tions, except that the source operand is an integer value in memory. The integer value is auto-
matically converted into an extended real value prior to making the comparison. The FICOMP
instruction pops the FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the
value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions are new in the Intel Pentium Pro processor. They
perform the same comparison as the FCOM and FCOMP instructions, except that they set the
status flags (ZF, PF, and CF) in the EFLAGS register to indicate the results of the comparison
(see Table 7-16) instead of the FPU condition code flags. The FCOMI and FCOMIP instructions
allow condition branch instructions (Jcc) to be executed directly from the results of their
comparison.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP
instructions, except that they do not generate a floating-point invalid-operation exception if the
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP
and FUCOMIP instructions pop the FPU register stack following the comparison operation.

The FXAM instruction determines the classification of the real value in the ST(0) register (that
is, whether the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsup-
ported format) or that the register is empty. It sets the FPU condition code flags to indicate the
classification (see “FXAM—Examine” on page 11-192). It also sets the C1 flag to indicate the
sign of the value.

Table 7-15. Setting of FPU Condition Code Flags for
Real Number Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 7-16. Setting of EFLAGS Status Flags for Real Number Comparisons

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

7-35

FLOATING-POINT UNIT

7.5.6.1. BRANCHING ON THE FPU CONDITION CODES

The processor does not offer any control-flow instructions that branch on the setting of the
condition code flags (C0, C2, and C3) in the FPU status word. To branch on the state of these
flags, the FPU status word must first be moved to the AX register in the integer unit. The
FSTSW AX (store status word) instruction can be used for this purpose. When these flags are
in the AX register, the TEST instruction can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the
AX register with the constant 0400H (see Table 7-17). This operation will clear the ZF flag
in the EFLAGS register if the condition code flags indicate an unordered result; otherwise,
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if
necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 7-17 in the TEST
instruction to test for a less than, equal to, or greater than result, then use the corresponding
conditional branch instruction to transfer program control to the appropriate procedure or
section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for
QNaN results, then it is not necessary to check for the unordered result every time a comparison
is made.

Some non-comparison FPU instructions update the condition code flags in the FPU status word.
To ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

7.5.7. Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the FPU register stack and they
return their results to the stack. The source operands must be given in radians.

Table 7-17. TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ

7-36

FLOATING-POINT UNIT

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper-
ates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0). It is useful for
converting rectangular coordinates to polar coordinates.

7.5.8. Pi

When the argument (source operand) of a trigonometric function is within the range of the func-
tion, the argument is automatically reduced by the appropriate multiple of 2π through the same
reduction mechanism used by the FPREM and FPREM1 instructions. The internal value of π
that the Pentium Pro processor uses for argument reduction and other computations is as
follows:

π = 0.f ∗ 2e

where:

f = C90FDAA2 2168C234 C

e = 2 if the significand is 0.f

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the signifi-
cand of an extended-real value. (Since 66 bits is not an even number of hexadecimal digits, two
additional zeros have been added to the value so that it can be represented in hexadecimal
format. The least-significant hexadecimal digit (C) is thus 1100B, where the two least-signifi-
cant bits represent bits 67 and 68 of the mantissa.)

This value of π has been chosen to guarantee no loss of significance in a source operand,
provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, FSINCOS,
or FPTAN instructions, the full 66-bit fraction of π should be used. This insures that the results
are consistent with the argument-reduction algorithms that these instructions use. Using a
rounded version of π can cause inaccuracies in result values, which if propagated through
several calculations, might result in meaningless results.

A common method of representing the full 66-bit fraction of π is to separate the value into two
numbers. For example, the following two double-real values (given in hexadecimal) added
together give the value for π shown earlier in this section with the full 66-bit fraction:

π = highπ + lowπ

where:

highπ = 400921FB 54400000

lowπ = 3DD0B4661 1A600000

Here highπ gives the most-significant 33 bits of π and lowπ gives the least-significant 33 bits.
Similar versions of π can also be written in extended-real format.

7-37

FLOATING-POINT UNIT

When using this two-part π value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can be avoided,
either by applying the trigonometric functions only to arguments within the range of the
automatic reduction mechanism, or by performing all argument reductions (down to a magni-
tude less than π/4) explicitly in software.

7.5.9. Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function,
and a scale function.

FYL2X Compute log (y ∗ log2x)
FYL2XP1 Compute log epsilon (y ∗ log2(x + 1))
F2XM1 Compute exponential (2x – 1)
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations.
The FYL2X instruction computes the log of (y ∗ log2x). This operation permits the calculation
of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYEXP1 instruction computes the log epsilon of (y ∗ log2 (x + 1)). This operation provides
optimum accuracy for values of epsilon (ε) that are close to 0.

The F2XM1 instruction computes the exponential (2x − 1). This instruction only operates on
source values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

7.5.10. Transcendental Instruction Accuracy

The algorithms that the Intel Pentium and Pentium Pro processors use for the transcendental
instructions (FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1)
allow a higher level of accuracy than was possible in earlier Intel Architecture math coproces-
sors and FPUs. The accuracy of these instructions is measured in terms of units in the last place
(ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) func-
tion values, respectively. The error in ulps is defined to be:

where k is an integer such that .

error f x() F x()–

2
k 63–-------------------------------=

1 2
k–
f x() 2<≤

7-38

FLOATING-POINT UNIT

With the Pentium Pro processor, the worst case error on transcendental functions is less than 1
ulp when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The
functions are guaranteed to be monotonic, with respect to the input operands, throughout the
domain supported by the instruction.

7.5.11. FPU Control Instructions

The following instructions control the state and modes of operation of the FPU. They also allow
the status of the FPU to be examined:

FINIT/FNINIT Initialize FPU
FLDCW Load FPU control word
FSTCW/FNSTCW Store FPU control word
FSTSW/FNSTSW Store FPU status word
FCLEX/FNCLEX Clear FPU exception flags
FLDENV Load FPU environment
FSTENV/FNSTENV Store FPU environment
FRSTOR Restore FPU state
FSAVE/FNSAVE Save FPU state
FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free FPU register
FNOP No operation
WAIT/FWAIT Check for and handle pending unmasked FPU exceptions

The FINIT/FNINIT instructions initialize the FPU and its internal registers to default values.

The FLDCW instructions loads the FPU control word register with a value from memory. The
FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the FPU control and status words,
respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the FPU environment and
state, respectively, in memory. The FPU environment includes all the FPU’s control and status
registers; the FPU state includes the FPU environment and the data registers in the FPU register
stack. The FLDENV and FRSTOR instructions load the FPU environment and state, respec-
tively, from memory into the FPU. These instructions are commonly used when switching tasks
or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics
for the same opcode.) These instructions check FPU status word for pending unmasked FPU
exceptions. If any pending unmasked FPU exceptions are found, they are handled before the
processor resumes execution of the instructions (integer, floating-point, or system instruction)
in the instruction stream. The WAIT/FWAIT instructions are provided to allow synchronization
of instruction execution between the FPU and the processor’s integer unit. See “Floating-Point
Exception Synchronization” on page 7-51 for more information on the use of the WAIT/FWAIT
instructions.

7-39

FLOATING-POINT UNIT

7.5.12. Waiting Vs. Non-Waiting Instructions

All of the floating-point instructions except a few special control instructions perform a wait
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending unmasked
FPU exceptions, before they perform their primary operation (such as adding two real numbers).
These instructions are called waiting instructions. Some of the FPU control instructions, such as
FSTSW/FNSTSW, have both a waiting and a non-waiting versions. The version waiting version
(with the “F” prefix) executes a wait operation before it performs its primary operation; whereas,
the non-waiting version (with the “FN” prefix) ignores pending unmasked exceptions. Non-
waiting instructions allow software to save the current FPU state without first handling pending
exceptions or to reset or reinitialize the FPU without regard for pending exceptions.

7.5.13. Unsupported FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel287 math coprocessor instruction
FSETPM perform no function in the Pentium Pro processor. If these opcodes are detected in the
instruction stream, the FPU performs no specific operation and no internal FPU states are
affected.

7.6. OPERATING ON NANS

As was described in “NaNs” on page 7-7, the FPU supports two types of NaNs: SNaNs and
QNaNs. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an ∞.) A QNaN is
any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not inter-
preted.

As a general rule, when a QNaN is used in one or more arithmetic floating-point instructions, it
is allowed to propagate through a computation. An SNaN on the other hand causes a floating-
point invalid-operation exception to be signaled. SNaNs are typically used to trap or invoke an
exception handler.

The floating-point invalid-operation exception has a flag and a mask bit associated with it in the
FPU status and control registers, respectively (see “Floating-Point Exception Handling” on page
7-40). The mask bit determines how the FPU handles an SNaN value. If the floating-point
invalid-operation mask bit is set, the SNaN is convert to a QNaN by setting the most-significant
fraction bit of the value to 1. The result is then stored in the destination operand and the floating-
point invalid-operation flag is set. If the invalid-operation mask is clear, a floating-point invalid-
operation fault is signaled and no result is stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result depends on
the source operands, as shown in Table 7-18 on page 7-40.

Except for the rules given at the beginning of this section for encoding SNaNs and QNaNs, soft-
ware is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs
can be encoded to carry and store data, such as diagnostic information.

7-40

FLOATING-POINT UNIT

7.7. FLOATING-POINT EXCEPTION HANDLING

The FPU detects six classes of exception conditions while executing floating-point instructions:

• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #IS) is used in this
manual to indicate exception conditions. It is merely a short-hand form and is not related to
assembler mnemonics.

Each of the six exception classes has a corresponding flag bit in the FPU status word and a mask
bit in the FPU control word (see “FPU Status Register” on page 7-11 and “FPU Control Word”
on page 7-15, respectively). In addition, the exception summary (ES) flag in the status word
indicates when any of the exceptions has been detected, and the stack fault (SF) flag (also in the
status word) distinguishes between the two types of invalid-operation exceptions.

When the FPU detects a floating-point exception, it sets the appropriate flags in the FPU status
word, then takes one of two possible courses of action:

• Handles the exception automatically, producing a predefined (and often times usable
result), while allowing program execution to continue undisturbed.

• Invokes a software exception handler to handle the exception.

Table 7-18. Rules for Generating QNaNs

Source Operands QNaN Result

An SNaN and a QNaN. The QNaN source operand.

Two SNaNs. The SNaN with the larger significand converted
into a QNaN.

Two QNaNs. The QNaN with the larger significand.

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

Neither source operand is a NaN and a floating-
point invalid-operation exception is signaled.

The default QNaN real indefinite.

7-41

FLOATING-POINT UNIT

The following sections describe how the FPU handles exceptions (either automatically or by
calling a software exception handler), how the FPU detects the various floating-point excep-
tions, and the automatic (masked) response to the floating-point exceptions.

7.7.1. Arithmetic vs. Non-Arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic
instructions and non-arithmetic instructions. Non-arithmetic instructions have no operands or
do not make substantial changes to their operands. Arithmetic instructions do make significant
changes to their operands; in particular, they make changes that could result in a floating-point
exception being signaled. Table 7-19 on page 7-42 lists the non-arithmetic and arithmetic
instructions. It should be noted that some non-arithmetic instructions can signal a floating-point
stack (fault) exception, but this exception is not the result of an operation on an operand.

7.7.2. Automatic Exception Handling

If the FPU detects an exception condition for a masked exception (an exception with its mask
bit set), it delivers a predefined (default) response and continues executing instructions. The
masked (default) responses to exceptions have been chosen to deliver a reasonable result for
each exception condition and are generally satisfactory for most floating-point applications. By
masking or unmasking specific floating-point exceptions in the FPU control word, programmers
can delegate responsibility for most exceptions to the FPU and reserve the most severe excep-
tion conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a
calculation, and then inspect the exception flags to see if any exceptions were detected during
the calculation.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked response.
For example, the FPU can detect a denormalized operand, perform its masked response to this
exception, and then detect numeric underflow.

7.7.3. Software Exception Handling

If the FPU detects an exception condition for an unmasked exception (an exception with its
mask bit cleared), a software exception handler is invoked immediately before execution of any
of the following instructions in the processor’s instruction stream:

• The next floating-point instruction, unless it is one of the non-waiting instructions
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE).

• The next WAIT/FWAIT instruction.

7-42

FLOATING-POINT UNIT

The method the processor uses to invoke the floating-point exception handler depends on the
setting of the NE flag of the CR0 control register and the state of the processor’s IGNNE# pin.

Table 7-19. Arithmetic and Non-Arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (conversion)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (conversion)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

7-43

FLOATING-POINT UNIT

If the NE flag is set, the exception handler is invoked through a floating-point-error exception
(#MF, vector 16). (When the NE flag is set, the IGNNE# signal has no effect on the processor.)

If the NE flag is cleared, but the IGNNE# pin is asserted, the processor disregards the exception
and continues executing instructions. (Here, the FPU never calls the floating-point exception
handler, but still generates masked and unmasked exception responses.)

If the NE bit is cleared and the IGNNE# pin is deasserted, an unmasked floating-point exception
causes the processor to do the following:

1. Stop instruction execution immediately before executing the next waiting floating-point
instruction or WAIT/FWAIT instruction and wait for an external interrupt. (Waiting
instructions are those floating-point instructions that cause the processor to check for and
service pending unmasked interrupts before the instructions are executed.)

2. Assert its FERR# pin to generate a external interrupt.

When using this external interrupt mechanism, the FERR# pin must be connected to an input to
an external interrupt controller. An external interrupt is then generated when the FERR# output
drives the input to the interrupt controller. (Regardless of the value of NE, an unmasked floating-
point exception always causes the FERR# pin to be asserted upon completion of the instruction
that caused the exception.)

Error reporting by means of an external interrupt is provided to support PC-style error reporting.
See Chapter 2, System Architecture Overview, in the Pentium Pro Family Developer’s Manual,
Volume 3 for more information about the NE bit.

After a floating-point exception handler is invoked, the processor handles the exception in the
same manner that it handles non-FPU exceptions. (The floating-point exception handler is
normally part of the operating system or executive software.) A typical action of the exception
handler is to store FPU state information in memory (with the FSTENV/FNSTENV or
FSAVE/FNSAVE instructions) so that it can evaluate the exception and formulate an appropriate
response (see “Saving the FPU’s State” on page 7-20). Other typical exception handler actions
include:

• Examine stored FPU state information (control, status, and tag words, and operand and
instruction pointers) to determine the nature of the error.

• Taking action to correct the condition that caused the error.

• Clear the exception bits in the status word.

• Return to the interrupted program and resume normal execution.

If the faulting floating-point instruction is followed by one or more non-floating-point instruc-
tions, it may not be useful to re-execute the faulting instruction. See “Floating-Point Exception
Synchronization” on page 7-51 for more information on synchronizing floating-point excep-
tions.

In cases where the handler needs to restart program execution with the faulting instruction, the
IRET instruction cannot be used directly. The reason for this is that because the exception is not
generated until the next floating-point or WAIT/FWAIT instruction following the faulting
floating-point instruction, the return instruction pointer on the stack may not point to the faulting

7-44

FLOATING-POINT UNIT

instruction. To restart program execution at the faulting instruction, the exception handler must
obtain a pointer to the instruction from the saved FPU state information, load it into the return
instruction pointer location on the stack, and then execute the IRET instruction.

In lieu of writing recovery procedures, the exception handler can do the following:

• Increment an exception counter for later display or printing.

• Print or display diagnostic information (such as, the FPU environment and registers).

• Halt further program execution.

7.8. FLOATING-POINT EXCEPTION CONDITIONS

The following sections describe the various conditions that cause a floating-point exception to
be generated and the masked response of the FPU when these conditions are detected. Chapter
11, Instruction Set Reference, lists the floating-point exceptions that can be signaled for each
floating-point instruction.

7.8.1. Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two general types of oper-
ations:

• Stack overflow or underflow (#IS).

• Invalid arithmetic operand (#IA).

The flag for this exception (IE) is bit 0 of the FPU status word, and the mask bit (IM) is bit 0 of
the FPU control word. The stack fault flag (SF) of the FPU status word indicates the type of
operation caused the exception. When the SF flag is set to 1, a stack operation has resulted in
stack overflow or underflow; when the flag is cleared to 0, an arithmetic instruction has encoun-
tered an invalid operand. Note that the FPU explicitly sets the SF flag when it detects a stack
overflow or underflow condition, but it does not explicitly clear the flag when it detects an
invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an
invalid-arithmetic-operation exception, if it was not cleared from the last time a stack overflow
or underflow condition occurred. See “Stack Fault Flag” on page 7-13 for more information
about the SF flag.

7.8.1.1. STACK OVERFLOW OR UNDERFLOW EXCEPTION (#IS)

The FPU tag word keeps track of the contents of the registers in the FPU register stack (see “FPU
Tag Word” on page 7-18). It then uses this information to detect two different types of stack
faults:

• Stack overflow—an instruction attempts to write a value into a non-empty FPU register

• Stack underflow—an instruction attempts to read a value from an empty FPU register.

7-45

FLOATING-POINT UNIT

When the FPU detects stack overflow or underflow, it sets the IE and SF flags in the FPU status
word to 1. It then sets condition-code flag C1 in the FPU status word to 1 if stack overflow
occurred or to 0 if stack underflow occurred.

If the invalid-operation exception is masked, the FPU then returns the real, integer, or BCD-
integer indefinite value to the destination operand, depending on the instruction being executed.
This value overwrites the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see
“Software Exception Handling” on page 7-41) and the top-of-stack pointer (TOP) and source
operands remain unchanged.

The term stack overflow comes from the condition where the a program has pushed eight values
onto the FPU register stack and the next value pushed on the stack causes a stack wraparound
to a register that already contains a value. The term stack underflow refers to the opposite condi-
tion from stack overflow. Here, a program has popped eight values from the FPU register stack
and the next value popped from the stack causes stack wraparound to an empty register.

A possible action of the invalid-operand exception handler for handling stack faults is to create
and maintain an extension of the FPU register stack (a virtual stack) in memory. The handler can
then adjust the stack contents by writing values to memory when stack overflow occurs or
reading values from memory when stack underflow occurs.

7.8.1.2. INVALID ARITHMETIC OPERAND EXCEPTION (#IA)

The FPU is able to detect a variety of invalid arithmetic operations that can be coded in a
program. These operations generally indicate a programming error, such as dividing ∞ by ∞.
Table 7-20 on page 7-46 lists the invalid arithmetic operations that the FPU detects. This group
includes the invalid operations defined in IEEE Std. 854.

When the FPU detects an invalid arithmetic operand, it sets the IE flag in the FPU status word
to 1. If the invalid-operation exception is masked, the FPU then returns an indefinite value to the
destination operand or sets the floating-point condition codes, as shown in Table 7-20. If the
invalid-operation exception is not masked, a software exception handler is invoked (see “Soft-
ware Exception Handling” on page 7-41) and the top-of-stack pointer (TOP) and source oper-
ands remain unchanged.

7.8.2. Division- By-Zero Exception (#Z)

The FPU reports a floating-point zero-divide exception whenever an instruction attempts to
divide a finite non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the FPU status
word, and the mask bit (ZM) is bit 2 of the FPU control word. The FDIV, FDIVP, FDIVR,
FDIVRP, FIDIV, and FIDIVR instructions and the other instructions that perform division inter-
nally (FYL2X and FXTRACT) can report the divide-by-zero exception.

7-46

FLOATING-POINT UNIT

When a divide-by-zero exception occurs and the exception is masked, the FPU sets the ZE flag
and returns the values shown in Table 7-20 on page 7-46. If the divide-by-zero exception is not
masked, the ZE flag is set, a software exception handler is invoked (see “Software Exception
Handling” on page 7-41), and the top-of-stack pointer (TOP) and source operands remain
unchanged.

Table 7-20. Invalid Arithmetic Operations and the Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an
unsupported format.

Return the real indefinite value to the destination
operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see
“Operating on NaNs” on page 7-39).

Compare and test operations: one or both operands
are NaNs.

Set the condition code flags (C0, C2, and C3) in
the FPU status word to 111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the real indefinite value to the destination
operand.

Multiplication: ∞ by 0; 0 by ∞. Return the real indefinite value to the destination
operand.

Division: ∞ by ∞; 0 by 0. Return the real indefinite value to the destination
operand.

Remainder instructions FPREM, FPREM1: modulus
(divisor) is 0 or dividend is ∞.

Return the real indefinite; clear condition code
flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN,
FSINCOS: source operand is ∞.

Return the real indefinite; clear condition code
flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0);
FYL2X: negative operand (except FYL2X (–0) = –∞);
FYL2XP1: operand more negative than –1.

Return the real indefinite value to the destination
operand.

FBSTP: source register is empty or it contains a NaN,
∞, or a value that cannot be represented in 18
decimal digits.

Store BDC integer indefinite value in the
destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the real indefinite
value, then perform the exchange.

Table 7-21. Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two
operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the
source operand.

7-47

FLOATING-POINT UNIT

7.8.3. Denormal Operand Exception (#D)

The FPU signals the denormal-operand exception under the following conditions:

• If an arithmetic instruction attempts to operate on a denormal operand (see “Normalized
and Denormalized Finite Numbers” on page 7-5).

• If an attempt is made to load a denormal single- or double-real value into an FPU register.
(If the denormal value being loaded is an extended-real value, the denormal-operand
exception is not reported.)

The flag (DE) for this exception is bit 1 of the FPU status word, and the mask bit (DM) is bit 1
of the FPU control word.

When a denormal-operand exception occurs and the exception is masked, the FPU sets the DE
flag, then proceeds with the instruction. The denormal operand in single- or double-real format
is automatically normalized when converted to the extended-real format. Operating on denormal
numbers will produce results at least as good as, and often better than, what can be obtained
when denormal numbers are flushed to zero. In fact, subsequent operations will benefit from the
additional precision of the internal extended-real format. Most programmers mask this excep-
tion so that a computation may proceed, then analyze any loss of accuracy when the final result
is delivered.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set
and a software exception handler is invoked (see “Software Exception Handling” on page 7-41).
The top-of-stack pointer (TOP) and source operands remain unchanged. When denormal oper-
ands have reduced significance due to loss of low-order bits, it may be advisable to not operate
on them. Precluding denormal operands from computations can be accomplished by an excep-
tion handler that responds to unmasked denormal-operand exceptions.

7.8.4. Numeric Overflow Exception (#O)

The FPU reports a floating-point numeric overflow exception (#O) whenever the rounded result
of an arithmetic instruction exceeds the largest allowable finite value that will fit into the real
format of the destination operand. For example, if the destination format is extended-real (80
bits), overflow occurs when the rounded result falls outside the unbiased range of −1.0 ∗ 216384

to 1.0 ∗ 216384 (exclusive). Numeric overflow can occur on arithmetic operations where the result
is stored in an FPU data register. It can also occur on store-real operations (with the FST and
FSTP instructions), where a within-range value in a data register is stored in memory in a single-
or double-real format. The overflow threshold range for the single-real format is −1.0 ∗ 2128 to
1.0 ∗ 2128; the range for the double-real format is −1.0 ∗ 21024 to 1.0 ∗ 21024.

The numeric overflow exception cannot occur when overflow occurs when storing values in an
integer or BCD integer format. Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the FPU status word, and the mask
bit (OM) is bit 3 of the FPU control word.

7-48

FLOATING-POINT UNIT

When a numeric-overflow exception occurs and the exception is masked, the FPU sets the OE
flag and returns one of the values shown in Table 7-22 on page 7-48. The value returned depends
on the current rounding mode of the FPU (see “Rounding Control Field” on page 7-16).
.

The action that the FPU takes when numeric overflow occurs and the numeric-overflow excep-
tion is not masked, depends on whether the instruction is supposed to store the result in memory
or on the register stack.

If the destination is a memory location, the OE flag is set and a software exception handler is
invoked (see “Software Exception Handling” on page 7-41). The top-of-stack pointer (TOP) and
source operands remain unchanged.

If the destination is the register stack, the exponent of the rounded result is divided by 224576 and
stored with the significand in the destination operand. Condition code bit C1 in the FPU status
word (called in this situation the “round-up bit”) is set if the significand was rounded upward
and cleared if the result is rounded toward 0. After the result is stored, the OE flag is set and a
software exception handler is invoked.

The scaling bias value 24,576 is equal to 3 ∗ 213. Biasing the exponent by 24,576 normally trans-
lates the number as nearly as possible to the middle of the extended-real exponent range so that,
if desired, it can be used in subsequent scaled operations with less risk of causing further
exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result is too large
to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the
result has been biased, a properly signed ∞ is stored in the destination operand.

7.8.5. Numeric Underflow Exception (#U)

The FPU reports a floating-point numeric underflow exception (#U) whenever the rounded
result of an arithmetic instruction is tiny; that is, less than the smallest possible normalized, finite
value that will fit into the real format of the destination operand. For example, if the destination
format is extended-real (80 bits), underflow occurs when the rounded result falls in the unbiased

Table 7-22. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number

7-49

FLOATING-POINT UNIT

range of −1.0 ∗ 2−16382 to 1.0 ∗ 2−16382 (exclusive). Like numeric overflow, numeric underflow
can occur on arithmetic operations where the result is stored in an FPU data register. It can also
occur on store-real operations (with the FST and FSTP instructions), where a within-range value
in a data register is stored in memory in a single- or double-real format. The underflow threshold
range for the single-real format is −1.0 ∗ 2−126 to 1.0 ∗ 2−126; the range for the double-real format
is −1.0 ∗ 2−1022 to 1.0 ∗ 2−1022. (The numeric underflow exception cannot occur when storing
values in an integer or BCD integer format.)

The flag (UE) for the numeric-underflow exception is bit 4 of the FPU status word, and the mask
bit (UM) is bit 4 of the FPU control word.

When a numeric-underflow exception occurs and the exception is masked, the FPU denormal-
izes the result (see “Normalized and Denormalized Finite Numbers” on page 7-5). If the denor-
malized result is exact, FPU stores the result in the destination operand, without setting the UE
flag. If the denormal result is inexact, the FPU sets the UE flag, then goes on to handle the
inexact-result exception condition (see “Inexact-Result (Precision) Exception (#P)” on page
7-49). It is important to note that if numeric-underflow is masked, a numeric-underflow excep-
tion is signaled only if the denormalized result is inexact. If the denormalized result is exact, no
flags are set and no exceptions are signaled.

The action that the FPU takes when numeric underflow occurs and the numeric-underflow
exception is not masked, depends on whether the instruction is supposed to store the result in
memory or on the register stack.

If the destination is a memory location, the UE flag is set and a software exception handler is
invoked (see “Software Exception Handling” on page 7-41). The top-of-stack pointer (TOP) and
source operands remain unchanged.

If the destination is the register stack, the exponent of the rounded result is multiplied by
224576 and stored with the significand in the destination operand. Condition code bit C1 in the
FPU the status register (acting here as a “round-up bit”) is set if the significand was rounded
upward and cleared if the result is rounded toward 0. After the result is stored, the UE flag is set
and a software exception handler is invoked.

The scaling bias value 24,576 is the same as is used for the overflow exception and has the same
effect, which is to translates the result as nearly as possible to the middle of the extended-real
exponent range.

When using the FSCALE instruction, massive underflow can occur, where the result is too tiny
to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the
result has been biased, a properly signed 0 is stored in the destination operand.

7.8.6. Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary form. This exception occurs frequently and indicates that
some (normally acceptable) accuracy has been lost. The exception is supported for applications
that need to perform exact arithmetic only. Because the rounded result is generally satisfactory

7-50

FLOATING-POINT UNIT

for most applications, this exception is commonly masked. Note that the transcendental instruc-
tions [FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1] by nature
produce inexact results.

The inexact-result exception flag (PE) is bit 4 of the FPU status word, and the mask bit (PM) is
bit 4 of the FPU control word.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the FPU sets the PE flag and stores the
rounded result in the destination operand. The current rounding mode determines the method
used to round the result (see “Rounding Control Field” on page 7-16). The C1 (round-up) bit in
the FPU status word indicates whether the inexact result was rounded up (C1 is set) or “not
rounded up” (C1 is cleared). In the “not rounded up” case (C1 is cleared), the least-significant
bits of the inexact result are truncated so that the result fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the FPU performs the same operation described in the
previous paragraph and, in addition, invokes a software exception handler (see “Software
Exception Handling” on page 7-41).

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and the PE flag are set and the result is stored as describe for the overflow or underflow
exceptions (see “Numeric Overflow Exception (#O)” on page 7-47 or “Numeric
Underflow Exception (#U)” on page 7-48). If the inexact-result exception is unmasked, the
FPU also invokes the software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as
describe for the overflow or underflow exceptions, and the software exception handler is
invoked.

• If an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a memory location, the inexact-result condition is ignored.

7.8.7. Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruc-
tion generates two or more exception conditions, the exception precedence sometimes results in
the higher-priority exception being handled and the lower-priority exceptions being ignored. For
example, dividing an SNaN by zero can potentially signal an invalid-arithmetic-operand excep-
tion (due to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are
masked, the FPU handles the higher-priority exception only (the invalid-arithmetic-operand
exception), returning a real indefinite to the destination. Alternately, a denormal-operand or
inexact-result exception can accompany a numeric underflow or overflow exception, with both
exceptions being handled.

7-51

FLOATING-POINT UNIT

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has
precedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a
lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions in conjunction with the inexact-result
exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-
point operation begins, whereas overflow, underflow, and precision errors are not detected until
a true result has been computed. When a pre-operation exception is detected, the FPU register
stack and memory have not yet been updated, and appear as if the offending instructions has not
been executed. When a post-operation exception is detected, the register stack and memory may
be updated with a result (depending on the nature of the error).

7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATION

Because the integer unit and FPU are separate execution units, it is possible for the processor to
execute floating-point, integer, and system instructions concurrently. No special programming
techniques are required to gain the advantages of concurrent execution. (Floating-point instruc-
tions are placed in the instruction stream along with the integer and system instructions.)
However, concurrent execution can cause problems for floating-point exception handlers.

The root of this problem concerns the way the FPU signals the existence of unmasked floating-
point exceptions. (Special exception synchronization is not required for masked floating-point
exceptions, because the FPU always returns a masked result to the destination operand.)

When a floating-point exception is unmasked and the exception condition occurs, the FPU stops
further execution of the floating-point instruction and signals the exception event. On the next
occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction
stream, the processor checks the ES flag in the FPU status word for pending floating-point
exceptions. It floating-point exceptions are pending, the FPU makes an implicit call (traps) to
the floating-point software exception handler. The exception handler can then execute recovery
procedures for selected or all floating-point exceptions.

7-52

FLOATING-POINT UNIT

Synchronization problems occur in the time frame between when the exception is signaled and
when it is actually handled. Because of concurrent execution, integer or system instructions can
be executed during this time frame. It is thus possible for the source or destination operands for
a floating-point instruction that faulted to be overwritten in memory, making it impossible for
the exception handler to analyze or recovery from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction
or a WAIT/FWAIT instruction) can be placed immediately after any floating-point instruction
that might present a situation where state information pertaining to a floating-point exception
might be lost or corrupted. Floating-point instructions that store data in memory are prime candi-
dates for synchronization. For example, the following three lines of code have the potential for
exception synchronization problems:

FILD COUNT ; Floating-point instruction

INC COUNT ; Integer instruction

FSQRT ; Subsequent floating-point instruction

In this example, the INC instruction modifies the result of a floating-point instruction (FILD).
If an exception is signaled during the execution of the FILD instruction, the result stored in the
COUNT memory location might be overwritten before the exception handler is called.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD
instruction, synchronizes the exception handling and eliminates the possibility of the exception
being handled incorrectly.

FILD COUNT ; Floating-point instruction

FSQRT ; Subsequent floating-point instruction synchronizes

 ; any exceptions generated by the FILD instruction.

INC COUNT ; Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruc-
tion are stored in the FPU data registers and will remain there, undisturbed, until the next
floating-point or WAIT/FWAIT instruction is executed. To absolutely insure that any exceptions
emanating from the FSQRT instruction are handled (for example, prior to a procedure call), a
WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending
unmasked exceptions (see “FPU Control Instructions” on page 7-38). They include the FNINIT,
FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an FNINIT,
FNSTENV, FNSAVE, or FNCLEX instruction is executed, all pending exceptions are essen-
tially lost (either the FPU status register is cleared or all exceptions are masked). The FNSTSW
and FNSTCW instructions do not check for pending interrupts, but they do not modify the FPU
status and control registers. A subsequent “waiting” floating-point instruction can then handle
any pending exceptions.

8-1

CHAPTER 8
INPUT/OUTPUT

In addition to transferring data to and from external memory, the Pentium Pro processor can also
transfer data to and from input/output ports (I/O ports). I/O ports are created in system hardware
by circuity that decodes the control, data, and address pins on the processor. These I/O ports are
then configured to communicate with peripheral devices. An I/O port can be an input port, an
output port, or a bidirectional port. Some I/O ports are used for transmitting data, such as to and
from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports
are used to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:

• I/O port addressing.

• I/O instructions.

• The I/O protection mechanism.

8.1. I/O PORT ADDRESSING

The processor allows I/O ports to be accessed in either of two ways:

• Through a separate I/O address space.

• Through memory-mapped I/O.

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions
and a special I/O protection mechanism. Accessing I/O ports through memory-mapped I/O is
handled with the processors general-purpose move and string instructions, with protection
provided through segmentation or paging. I/O ports can be mapped so that they appear in the
I/O address space or the physical-memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be
completed before the next instruction in the instruction stream is executed. Thus, I/O writes to
control system hardware cause the hardware to be set to its new state before any other instruc-
tions are executed. See “Ordering I/O” on page 8-6 for more information on serializing of I/O
operations.

8.2. I/O PORT HARDWARE

From a hardware point of view, I/O is handled through the processor’s address lines. A special
memory-I/O transaction on the system bus indicates whether the address lines are being driven
with a memory address or an I/O address. When the separate I/O address space is selected, it is
the responsibility of the hardware to decode the memory-I/O bus transaction to select I/O ports
rather than memory.

Data is transmitted between the processor and an I/O device through the data lines.

8-2

INPUT/OUTPUT

8.3. I/O ADDRESS SPACE

The processor’s I/O address space is separate and distinct from the physical-memory address
space. The I/O address space consists of 216 (64K) individually addressable 8-bit I/O ports,
numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH are reserved. Do not assign
I/O ports to these addresses.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports
can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 32 bits to or from a device
in the I/O address space. Like words in memory, 16-bit ports should be aligned to even addresses
(0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports
should be aligned to addresses that are multiples of four (0, 4, 8, ...). The processor supports data
transfers to unaligned ports, but there is a performance penalty because one or more extra bus
cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed
to remain the same in future Intel Architecture processors. If hardware or software requires that
I/O ports be written to in a particular order, that order must be specified explicitly. For example,
to load a word-length I/O port at address 2H and then another word port at 4H, two word-length
writes must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space.
Accessing I/O ports through the I/O address space is thus a possible source of parity errors.

8.3.1. Memory-Mapped I/O

I/O devices that respond like memory components can be accessed through the processor’s
physical-memory address space (see Figure 8-1 on page 8-3). When using memory-mapped I/O,
any of the processor’s instructions that reference memory can be used to access an I/O port
located at a physical-memory address. For example, the MOV instruction can transfer data
between any register and a memory-mapped I/O port. The AND, OR, and TEST instructions
may be used to manipulate bits in the control and status registers of a memory-mapped periph-
eral devices.

If caching is enabled in real-address mode, caching of I/O accesses can be prevented by using
MTRRs to map the I/O address space as uncacheable (UC). See Chapter 11, Memory Cache
Control, in the Pentium Pro Family Developer’s Manual, Volume 3 for a complete discussion of
the MTRRs.

8.4. I/O INSTRUCTIONS

The processor’s I/O instructions provide access to I/O ports through the I/O address space.
(These instructions cannot be used to access memory-mapped I/O ports). There are two groups
of I/O instructions:

• Those which transfer a single item (byte, word, or doubleword) between an I/O port and a
general-purpose register.

8-3

INPUT/OUTPUT

• Those which transfer strings of items (strings of bytes, words, or doublewords) between an
I/O port and memory.

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data
between I/O ports and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL
(8-bit I/O) register. The address of the I/O port can be given with an immediate value or a value
in the DX register.

The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port)
move data between an I/O port and a memory location. The address of the I/O port being
accesses is given in the DX register; the source or destination memory address is given in the
DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions
perform string (or block) input or output operations. The repeat prefix REP modifies the INS
and OUTS instructions to transfer blocks of data between an I/O port and memory. Here, the ESI
or EDI register is incremented or decremented (according to the setting of the DF flag in the
EFLAGS register) after each byte, word, or doubleword is transferred between the selected I/O
port and memory.

See the individual references for the IN, INS, OUT, and OUTS instructions in Chapter 11,
Instruction Set Reference, for more information on these instructions.

Figure 8-1. Memory-Mapped I/O

FFFF FFFFH

I/O Port

EPROM

RAM

Physical Memory

0

I/O Port

I/O Port

8-4

INPUT/OUTPUT

8.5. PROTECTED-MODE I/O

When the processor is running in protected mode, the following protection mechanisms regulate
access to I/O ports:

• When accessing I/O ports through the I/O address space, two protection devices control
access:

— The I/O privilege level (IOPL) field in the EFLAGS register.

— The I/O permission bit map of a task state segment (TSS).

• When accessing memory-mapped I/O ports, the normal segmentation and paging
protection and the memory type range registers (MTRRs) also affect access to I/O ports.
See Chapter 4, Protection, and Chapter 11, Memory Cache Control, in Pentium Pro Family
Developer’s Manual, Volume 3 for a complete discussion of memory protection.

The following sections describe the protection mechanisms available when accessing I/O ports
in the I/O address space with the I/O instructions.

8.5.1. I/O Privilege Level

In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access
to the I/O address space by restricting use of selected instructions. This protection mechanism
permits the operating system or executive to set the privilege level needed to perform I/O. In a
typical protection ring model, access to the I/O address space is restricted to privilege levels 0
and 1. Here, kernel and the device drivers are allowed to perform I/O, while less privileged
device drivers and application programs are denied access to the I/O address space. Application
programs must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of the
program or task currently executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI
(clear interrupt-enable flag), and STI (set interrupt-enable flag). These instructions are called
I/O sensitive instructions, because they are sensitive to the IOPL field. Any attempt by a less
privileged program or task to use an I/O sensitive instruction results in a general-protection
exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register,
each task can have a different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensi-
tive instructions, allowing access to some I/O ports by less privileged programs or tasks (see
“I/O Permission Bit Map” on page 8-5).

A program or task can change its IOPL only with the POPF and IRET instructions; however,
such changes are privileged. No procedure may change the current IOPL unless it is running at
privilege level 0. An attempt by a less privileged procedure to change the IOPL does not result
in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and
STI instructions); however, the POPF instruction in this case is also I/O sensitive. A procedure
may use the POPF instruction to change the setting of the IF flag only if the CPL is less than or

8-5

INPUT/OUTPUT

equal to the current IOPL. An attempt by a less privileged procedure to change the IF flag does
not result in an exception; the IF flag simply remains unchanged.

8.5.2. I/O Permission Bit Map

The I/O permission bit map is a device for permitting limited access to I/O ports by less privi-
leged programs or tasks and for tasks operating in virtual-8086 mode. The I/O permission bit
map is located in the TSS (see Figure 8-2 on page 8-5) for the currently running task or program.
The address of the first byte of the I/O permission bit map is given in the I/O map base address
field of the TSS. The size of the I/O permission bit map and its location in the TSS are variable.

Because each task has its own TSS, each task has its own I/O permission bit map. Access to indi-
vidual I/O ports can thus be granted to individual tasks.

If in protected mode the CPL is less than or qual to the current IOPL, the processor allows all
I/O operations to proceed. If the CPL is greater than the IOPL or if the processor is operating in
virtual-8086 mode, the processor checks the I/O permission bit map to determine if access to a
particular I/O port is allowed. Each bit in the map corresponds to an I/O port byte address. For
example, the control bit for I/O port address 29H in the I/O address space is found at bit position
1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the I/O port being addressed. For a doubleword access, for example, the processors
tests the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set,
a general-protection exception (#GP) is signaled. If all tested bits are clear, the I/O operation is
allows to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the
processor read two bytes from the I/O permission bit map for every access to an I/O port. To
prevent exceptions from being generated when the ports with the highest addresses are accessed,

Figure 8-2. I/O Permission Bit Map

I/O Map Base

Task State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O base map must
not exceed DFFFH.

Last byte of bit
map must be

followed by a byte
with all bits set

8-6

INPUT/OUTPUT

an extra byte needs to included in the TSS immediately after the table. This byte must have all
of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses
not spanned by the map are treated as if they had set bits in the map. For example, if the TSS
segment limit is 10 bytes past the bit-map base address, the map has 11 bytes and the first 80 I/O
ports are mapped. Higher addresses in the I/O address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O
permission map, and all I/O instructions generate exceptions when the CPL is greater than the
current IOPL. The I/O bit map base address must be less than or equal to DFFFH.

8.5.3. Caching and Paging

In protected mode, the paging mechanism can be used to control caching of data buffers used
for I/O and memory-mapped I/O addresses. If caching is enabled, either the MTRRs or the
paging mechanism (the PCD bit in the page table entry) must be used to prevent caching of data
buffers or memory-mapped I/O addresses.

The segmentation or paging mechanism can also be used to manage the data space accessed by
the I/O mechanism. The operating system or executive can use the AVL (available) fields in
segment descriptors or page table entries to mark pages containing data buffers as unrelocatable
and unswappable.

8.6. ORDERING I/O

When controlling I/O devices it is often important that memory and I/O operations be carried
out in precisely the order programmed. For example, a program may write a command to an I/O
port, then read the status of the I/O device from another I/O port. It is important that the status
returned be the status of the device after it receives the command, not before.

When using memory-mapped I/O, caution should be taken to avoid situations in which the
programmed order is not preserved by the processor. To optimize performance, the processor
allows memory reads to be reordered ahead of buffered writes in most situations. Internally,
processor reads (cache hits) can be reordered around buffered writes. Memory reordering does
not occur externally at the pins, reads (cache misses) and writes appear in-order. Using memory-
mapped I/O, therefore, creates the possibility that an I/O read might be performed before the
memory write of a previous instruction. The recommended method of enforcing program
ordering of I/O accesses with the Pentium Pro processor, is to use the MTRRs to make the
memory mapped I/O address space uncacheable. This operation insures that reads and writes of
I/O devices are carried out in program order. See Chapter 11, Memory Cache Control, in the
Pentium Pro Family Developer’s Manual, Volume 3 for more information on using MTRRs.

8-7

INPUT/OUTPUT

Another method of enforcing program order is to insert one of the serializing instructions, such
as the CPUID instruction, between operations. See Chapter 7, Multiple Processor Management,
in the Pentium Pro Family Developer’s Manual, Volume 3 for more information on serialization
of instructions.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in
two respects:

• I/O writes are never buffered. Therefore, strict ordering of I/O operations is enforced by
the processor.

• The processor synchronizes I/O instruction execution with external bus activity (see
Table 8-1 on page 8-7).

Table 8-1. I/O Instruction Serialization

Instruction Being
Executed

Processor Delays Execution of … Until Completion of …

Current
Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes

9-1

CHAPTER 9
PROCESSOR IDENTIFICATION AND

FEATURE DETERMINATION

When writing software intended to run on several different processors in the Intel Architecture
family, it is generally necessary to identify the type of processor present in a system and the
processor features that are available to an application. This chapter describes how to identify the
processor that is executing the code and determine the features the processor supports. It also
shows how to determine if an FPU or NPX is present. See Chapter 10, Intel Architecture
Compatibility, for a complete list of the features that are available for the different Intel Archi-
tecture processors.

9.1. PROCESSOR IDENTIFICATION

The CPUID instruction returns the processor type for the processor that executes the instruction.
It also indicates the features that are present in the processor, including the existence of an
on-chip FPU. The following information can be obtained with this instruction:

• The highest operand value the instruction responds to (2 for the Pentium Pro processor).

• The processor’s family identification (ID) number, model ID, and stepping ID.

• The presence of an on-chip FPU.

• Support for or the presence of the following architectural extensions and enhancements:

— Virtual-8086 mode enhancements.

— Debugging extensions.

— Page-size extensions.

— Read time stamp counter (RDTSC) instruction.

— Read model specific registers (RDMSR) and write model specific registers (WRMSR)
instructions.

— Physical address extension.

— Machine check exceptions.

— Compare and exchange 8 bytes instruction (CMPXCHG8B).

— On-chip, advanced programmable interrupt controller (APIC).

— Memory-type range registers (MTRRs).

— Page global flag.

9-2

PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

— Machine check architecture.

— Conditional move instruction (CMOVcc).

• Cache information.

To use this instruction, a source operand value of 0, 1 or 2 is placed in the EAX register.
Processor identification and feature information is then returned in the EAX, EBX, ECX, and
EDX registers. See “CPUID—CPU Identification” on page 11-73 for more detailed information
about the instruction.

9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE
PROCESSORS

The CPUID instruction is only available in the Pentium Pro and Pentium processors. For the
Intel486 and earlier Intel Architecture processors, several other architectural features can be
exploited to identify the processor.

The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register (see
Figure 3-7 on page 3-9) is different for Intel’s 32-bit processors than for the Intel 8086 and Intel
286 processors. By examining the settings of these bits (with the PUSHF/PUSHFD and
POP/POPFD instructions), an application program can determine whether the processor is an
8086, Intel286, or one of the Intel 32-bit processors:

• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.

• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.

• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14
have the last value loaded into them. In protected mode, bit 15 is always clear, bit 14 has
the last value loaded into it, and the IOPL bits depends on the current privilege level
(CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit processors:

• Bit 18 (AC) — Implemented only on the Pentium Pro, Pentium, and Intel486 processors.
The inability to set or clear this bit distinguishes an Intel386 processor from the other Intel
32-bit processors.

• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The
ability to set and clear this bit indicates that the processor is either a Pentium Pro or a
Pentium processor.

To determine whether an FPU or NPX is present in a system, applications can write to the
FPU/NPX status and control registers using the FNINIT instruction and then verify the correct
values are read back using the FNSTENV instruction.

9-3

PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

After determining that an FPU or NPX is present, its type can then be determined. In most cases,
the processor type will determine the type of FPU or NPX; however, an Intel386 processor is
compatible with either an Intel287 or Intel387 math coprocessor. The method the coprocessor
uses to represent ∞ indicates which coprocessor is present. The Intel287 math coprocessor uses
the same bit representation for +∞ and −∞; whereas, the Intel387 math coprocessor uses
different representations for +∞ and −∞.

See “Intel Application Note 485 — Intel Processor Identification With the CPUID Instruction”
for more information on identifying Intel Architecture processors. This application note also
provides example source code for using the CPUID instruction and the other processor identifi-
cation techniques.

10-1

CHAPTER 10
INTEL ARCHITECTURE COMPATIBILITY

The Pentium Pro processor is fully binary compatible with all Intel Architecture processors,
including the Pentium, Intel486 DX and SX, Intel386 DX and SX, Intel 286, and the 8086/8088
processors. Compatibility means that, within certain limited constraints, programs that execute
on previous generations of Intel Architecture processors will produce identical results when
executed on the Pentium Pro processor. The compatibility constraints and any implementation
differences between the Intel Architecture processors are described in this chapter and in
Chapter 15, Intel Architecture Compatibility, in the Pentium Pro Family Developer’s Manual,
Volume 3. The compatibility issues described in this chapter deal with new instructions, the basic
execution environment, and the floating-point unit (FPU) and math coprocessors. Compatibility
issues regarding the system architecture of the processors are covered in the Pentium Pro Family
Developer’s Manual, Volume 3.

The Pentium Pro processor also includes extensions to the registers, instruction set, and control
functions found in earlier Intel Architecture processors. Those extensions have been defined
with consideration for compatibility with previous and future processors. This chapter also
summarizes the compatibility considerations for those extensions.

10.1. RESERVED BITS

Throughout this manual, certain bits are marked as reserved in many register and memory layout
descriptions. When bits are marked as undefined or reserved, it is essential for compatibility
with future processors that software treat these bits as having a future, though unknown effect.
Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers or
memory locations that contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing them to memory or to a
register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Avoid any software dependence upon the state of reserved Pentium Pro processor bits.
Depending on the values of reserved bits will make software dependent upon the unspecified
manner in which the Pentium Pro processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

Software written for an Pentium, Intel486, or Intel386 processor that handles reserved bits
correctly will port to the Pentium Pro processor without generating protection exceptions.

10-2

INTEL ARCHITECTURE COMPATIBILITY

10.2. ENABLING NEW FUNCTIONS AND MODES

Most of the new control functions defined for the Pentium Pro processor are enabled by new
mode flags in the control registers (primarily register CR4). This register is undefined for Intel
Architecture processors earlier than the Pentium processor. Attempting to access this register
with an Intel486 or earlier Intel Architecture processor results in an invalid-opcode exception
(#UD). Consequently, programs that execute correctly on the Intel486 or earlier Intel Architec-
ture processor cannot erroneously enable these functions. Attempting set a reserved bit in
register CR4 to a value other than its original value results in a general-protection exception
(#GP). So, programs that execute on the Pentium Pro processor cannot erroneously enable func-
tions that may be implemented in future processors.

The Pentium Pro processor does not check for attempts to set reserved bits in model-specific
registers. It is the obligation of the software writer to enforce this discipline. These reserved bits
may be used in future Intel processors.

10.3. DETECTING THE PRESENCE OF NEW FEATURES
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in either of two
ways:

• Test for the presence of the feature or extension — Software can test for the presence of
new flags in the EFLAGS register and control registers. If these flags are reserved
(meaning not present in the processor executing the test), an exception is generated.
Likewise, software can attempt to execute a new instruction, which results in an invalid-
opcode exception (#UD) being generated if it is not supported.

• Execute the CPUID instruction — The CPUID instruction (added to the Intel Architecture
in the Pentium processor) indicates the presence of new features directly.

See Chapter 9, Processor Identification and Feature Determination, for detailed information on
detecting new processor features and extensions.

10.4. NEW INSTRUCTIONS

This section identifies the introduction of new instructions for the 32-bit Intel Architecture
processors.

10-3

INTEL ARCHITECTURE COMPATIBILITY

10.4.1. New Pentium Pro Processor Instructions

The following instructions are new in the Pentium Pro processor:

• CMOVcc (conditional move) instruction, see “CMOVcc—Conditional Move” on page
11-60.

• FCMOVcc (floating-point conditional move) instructions, see “FCMOVcc—Floating-
Point Conditional Move” on page 11-106.

• FCOMI (floating-point compare and set EFLAGS) instructions, see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111.

• RDPMC (read performance monitoring counters) instruction, see “RDPMC—Read
Performance-Monitoring Counters” on page 11-330. This instruction was available in the
Pentium processor, but was undocumented.

• UD2 (undefined) instruction, see “UD2—Undefined Instruction” on page 11-380.

10.4.2. New Pentium Processor Instructions

The following instructions are new in the Pentium processor:

• CMPXCHG8B (compare and exchange 8 bytes) instruction.

• CPUID (CPU identification) instruction.

• RDTSC (read time-stamp counter) instruction.

• RDMSR (read model-specific register) instruction.

• WRMSR (write model-specific register) instruction.

• RSM (resume from SSM) instruction.

The form of the MOV instruction used to access the test registers has been removed on the
Pentium and future Intel Architecture processors.

10.4.3. New Intel486 Processor Instructions

The following instructions are new in the Intel486 processor:

• BSWAP (byte swap) instruction.

• XADD (exchange and add) instruction.

• CMPXCHG (compare and exchange) instruction.

• ΙNVD (invalidate cache) instruction.

• WBINVD (write-back and invalidate cache) instruction.

• INVLPG (invalidate TBL entry) instruction.

10-4

INTEL ARCHITECTURE COMPATIBILITY

10.4.4. New Intel386 Processor Instructions

The following instructions are new in the Intel386 processor:

• LSS, LFS, and LGS (load SS, FS, and GS registers)

• Long-displacement conditional jumps.

• Single-bit instructions.

• Bit scan instructions.

• Double-shift instructions.

• Byte set on condition instruction.

• Move with sign/zero extension.

• Generalized multiply instruction.

• MOV to and from control registers.

• MOV to and from test registers (now obsolete).

• MOV to and from debug registers.

10.5. OBSOLETE INSTRUCTIONS

The MOV to and from test registers instructions were removed the Pentium and future Intel
Architecture processors. Execution of these instructions generates an invalid-opcode exception
(#UD).

10.6. UNDEFINED OPCODES

All new instructions defined for Intel Architecture processors use binary encodings that were
reserved on earlier-generation processors. Attempting to execute a reserved opcode always
results in an invalid-opcode (#UD) exception being generated. Consequently, programs that
execute correctly on earlier-generation processors cannot erroneously execute these instructions
and thereby produce unexpected results when executed on later Intel Architecture processors.

10.7. NEW FLAGS IN THE EFLAGS REGISTER

Figure 3-7 on page 3-9 shows the configuration of flags in the EFLAGS register for the Pentium
Pro processor. No new flags have been added to this register in the Pentium Pro processor. The
flags added to this register in the Pentium and Intel486 processors are described in the following
sections.

10-5

INTEL ARCHITECTURE COMPATIBILITY

10.7.1. New Pentium Processor Flags

The following flags were added to the EFLAGS register in the Pentium processor:

• VIF (virtual interrupt flag), bit 19.

• VIP (virtual interrupt pending), bit 20.

• ID (identification flag), bit 21.

10.7.2. New Intel486 Processor Flags

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel
Architecture Processors

The following bits in the EFLAGS register that can be used to differentiate between the 32-bit
Intel Architecture processors:

• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the Pentium Pro,
Pentium, and Intel486 processors. Since it is not implemented on the Intel386 processor, it
will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction.
The ability to set and clear this bit indicates that the processor is a Pentium Pro or Pentium
processor. The CPUID instruction can then be used to determine which processor.

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not
support virtual mode extensions, which includes all 32-bit processors prior to the Pentium
processor.

See Chapter 9, Processor Identification and Feature Determination, for more information on
identifying processors.

10.8. STACK OPERATIONS

This section identifies the differences in stack implementation between the various Intel Archi-
tecture processors.

10.8.1. PUSH SP

The Pentium Pro, Pentium, Intel486, Intel386, and Intel 286 processors push a different value
on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit processors push the
value of the SP register before it is decremented as part of the push operation; the 8086 processor

10-6

INTEL ARCHITECTURE COMPATIBILITY

pushes the value of the SP register after it is decremented. If the value pushed is important,
replace PUSH SP instructions with the following three instructions:

PUSH BP

MOV BP, SP

XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the Pentium Pro, Pentium,
Intel486, Intel386, and Intel 286 processors.

10.8.2. EFLAGS Pushed On The Stack

The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT
flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and by exceptions is
different with the 32-bit Intel Architecture processors than with the 8086 and Intel 286 proces-
sors. The differences are as follows:

• 8086 processor—bits 12 through 15 are always set.

• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.

• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12
through 14 have the last value loaded into them.

10.9. FPU

This section addresses the issues that must be faced when porting floating-point software
designed to run on earlier Intel Architecture processors and math coprocessors to a Pentium Pro
processor with integrated FPU. To software, the Pentium Pro processor looks very much like a
Pentium processor. Floating-point software which runs on the Pentium or Intel486 DX
processor, or on an Intel486 SX processor/Intel487 SX math coprocessor system or an Intel386
processor/Intel387 math coprocessor system, will run with at most minor modifications on the
Pentium Pro processor. To port code directly from an Intel 286 processor/Intel287 math copro-
cessor system or an Intel 8086 processor/8087 math coprocessor system to the Pentium Pro
processor, certain additional issues must be addressed.

In the following sections, the term “32-bit Intel Architecture FPUs” refers to the Pentium Pro,
Pentium, and Intel486 DX processors, and to the Intel487 SX and Intel387 math coprocessors;
the term “16-bit Intel Architecture math coprocessors” refers to the Intel287 and 8087 math
coprocessors.

10.9.1. Control Register CR0 Flags

The ET, NE, and MP flags in control register CR0 control the interface between the integer unit
of an Intel Architecture processor and either its internal FPU or an external math coprocessor.
The effect of these flags in the various Intel Architecture processors are described in the
following paragraphs.

10-7

INTEL ARCHITECTURE COMPATIBILITY

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 processor to indi-
cate whether the math coprocessor in the system is an Intel287 math coprocessor (flag is clear)
or an Intel387 DX math coprocessor (flag is set). This bit is hardwired to 1 in the Pentium Pro,
Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the Pentium Pro,
Pentium, and Intel486 processors to determine whether unmasked floating-point exceptions are
reported internally through interrupt vector 16 (flag is set) or externally through an external
interrupt (flag is clear). On a hardware reset, the NE flag is initialized to 0, so software using the
automatic internal error-reporting mechanism must set this flag to 1. This flag is nonexistent on
the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 of register
CR0) determines whether the WAIT/FWAIT instructions or waiting-type floating-point instruc-
tions trap when the context of the FPU is different from that of the currently-executing task. If
the MP and TS flag are set, then a WAIT/FWAIT instruction and waiting instructions will cause
a device-not-available exception (interrupt vector 7). The MP flag is used on the Intel 286 and
Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other
than a math coprocessor. The device reports its status through the BUSY# pin. Since the Pentium
Pro, Pentium, and Intel486 processors do not have such a pin, the MP flag has no relevant use
and should be set to 1 for normal operation.

10.9.2. FPU Status Word

This section identifies differences to the FPU status word for the different Intel Architecture
processors and math coprocessors, the reason for the differences, and their impact on software.

10.9.2.1. CONDITION CODE FLAGS (C0 THROUGH C3)

The following information pertains to differences in the use of the condition code flags (C0
through C3) located in bits 8, 9, 10, and 14 of the FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit Intel Architecture FPU,
the condition code flags are set to 0. The same operations on a 16-bit Intel Architecture math
coprocessor leave these flags intact (they contain their prior value). This difference in operation
has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the Pentium Pro and Pentium processors
(see “Transcendental Instruction Accuracy” on page 7-37) may differ from the Intel486 DX
processor and Intel487 SX math coprocessor by 2 to 3 units in the last place (ulps). As a result,
the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the
32-bit Intel Architecture FPUs. After the same operation on a 16-bit Intel Architecture math
coprocessor, these flags are left intact.

10-8

INTEL ARCHITECTURE COMPATIBILITY

On the 32-bit Intel Architecture FPUs, the C2 flag serves as an incomplete flag for the FTAN
instruction. On the 16-bit Intel Architecture math coprocessors, the C2 flag is undefined for the
FPTAN instruction. This difference has no impact on software, because Intel287 or 8087
programs do not check C2 after an FPTAN instruction. The use of this flag on later processors
allows fast checking of operand range.

10.9.2.2. STACK FAULT FLAG

When unmasked stack overflow or underflow occurs on a 32-bit Intel Architecture FPU, the IE
flag (bit 0) and the SF flag (bit 6) of the FPU status word are set to indicate a stack fault and
condition code flag C1 is set or cleared to indicate overflow or underflow, respectively. When
unmasked stack overflow or underflow occurs on a 16-bit Intel Architecture math coprocessor,
only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-
bit Intel Architecture FPU has no impact on software. Existing exception handlers need not
change, but may be upgraded to take advantage of the additional information.

10.9.3. FPU Control Word

Only affine closure is supported for infinity control on a 32-bit Intel Architecture FPU. The
infinity control flag (bit 12 of the FPU control word) remains programmable on these proces-
sors, but has no effect. This change was made to conform to IEEE Standard 754. On a 16-bit
Intel Architecture math coprocessor, both affine and projective closures are supported, as deter-
mined by the setting of bit 12. After a hardware reset, the default value of bit 12 is projective.
Software that requires projective infinity arithmetic may give different results.

10.9.4. FPU Tag Word

When loading the tag word of a 32-bit Intel Architecture FPU, using an FLDENV or FRSTOR
instruction, the processor examines the incoming tag and classifies the location only as empty
or non-empty. Thus, tag values of 00, 01, and 10 are interpreted by the processor to indicate a
non-empty location. The tag value of 11 is interpreted by the processor to indicate an empty
location. Subsequent operations on a non-empty register always examine the value in the
register, not the value in its tag. The FSTENV and FSAVE instructions examine the non-empty
registers and put the correct values in the tags before storing the tag word.

The corresponding tag for a 16-bit Intel Architecture math coprocessor is checked before each
register access to determine the class of operand in the register; the tag is updated after every
change to a register so that the tag always reflects the most recent status of the register. Software
can load a tag with a value that disagrees with the contents of a register (for example, the register
contains a valid value, but the tag says special). Here, the 16-bit Intel Architecture math copro-
cessors honor the tag and do not examine the register.

Software written to run on a 16-bit Intel Architecture math coprocessor may not operate
correctly on a 16-bit Intel Architecture FPU, if it uses FLDENV or FRSTOR to change tags to
values (other than to empty) that are different from actual register contents.

10-9

INTEL ARCHITECTURE COMPATIBILITY

The encoding in the tag word for the 32-bit Intel Architecture FPUs for unsupported data
formats (including pseudo-zero and unnormal) is special (10B), to comply with the IEEE
Standard 754 standard. The encoding in the 16-bit Intel Architecture math coprocessors for
pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats
is special (10B). Code that recognizes the pseudo-zero or unnormal format as valid must there-
fore be changed if it is ported to a 32-bit Intel Architecture FPU.

10.9.5. Data Types

This section discusses the differences of data types for the various Intel Architecture FPUs and
math coprocessors.

10.9.5.1. NANS

The 32-bit Intel Architecture FPUs distinguish between signaling NaNs (SNaNs) and quiet
NaNs (QNaNs). These FPUs only generate QNaNs and normally do not generate an exception
upon encountering a QNaN. An invalid-operation exception (#I) is generated only upon encoun-
tering a SNaN, except for the FCOM, FIST, and FBSTP instructions, which also generates an
invalid-operation exceptions for a QNaNs. This behavior matches the IEEE Standard 754.

The 16-bit Intel Architecture math coprocessors only generate one kind of NaN (the equivalent
of a QNaN), but the raise an invalid-operation exception upon encountering any kind of NaN.

When porting software written to run on a 16-bit Intel Architecture math coprocessor to a 32-bit
Intel Architecture FPU, uninitialized memory locations that contain QNaNs should be changed
to SNaNs to cause the FPU or math coprocessor to fault when uninitialized memory locations
are referenced.

10.9.5.2. PSEUDO-ZERO, PSEUDO-NAN, PSEUDO-INFINITY, AND
UNNORMAL FORMATS

The 32-bit Intel Architecture FPUs neither generate nor support the pseudo-zero, pseudo-NaN,
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arithmetic opera-
tion, they raise an invalid-operation exception. The 16-bit Intel Architecture math coprocessors
define and support special handling for these formats. Support for these formats was dropped to
conform with the IEEE Standard 754.

This change should not impact software ported from 16-bit Intel Architecture math coprocessors
to 32-bit Intel Architecture FPUs. The 32-bit Intel Architecture FPUs do not generate these
formats, and therefore will not encounter them unless software explicitly loads them in the data
registers. The only affect may be in how software handles the tags in the tag word (see “FPU
Tag Word” on page 10-8).

10-10

INTEL ARCHITECTURE COMPATIBILITY

10.9.6. Floating-Point Exceptions

This section identifies the implementation differences in exception handling for floating-point
instructions in the various Intel Architecture FPUs and math coprocessors.

10.9.6.1. DENORMAL OPERAND EXCEPTION (#D)

When the denormal operand exception is masked, the 32-bit Intel Architecture FPUs automati-
cally normalize denormalized numbers when possible; whereas, the 16-bit Intel Architecture
math coprocessors return a denormal result. A program written to run on a 16-bit Intel Architec-
ture math coprocessor that uses the denormal exception solely to normalize denormalized
operands is redundant when run on the 32-bit Intel Architecture FPUs. If such a program is run
on 32-bit Intel Architecture FPUs, performance can be improved by masking the denormal
exception. Floating-point programs run faster when the FPU performs normalization of denor-
malized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT
instruction on the 16-bit Intel Architecture math coprocessors. This exception is raised for these
instructions on the 32-bit Intel Architecture FPUs. The exception handlers ported to these latter
processors need to be changed only if the handlers gives special treatment to different opcodes.

10.9.6.2. NUMERIC OVERFLOW EXCEPTION (#O)

On the 32-bit Intel Architecture FPUs, when the numeric overflow exception is masked and the
rounding mode is set to chop (toward 0), the result is the largest positive or smallest negative
number. The 16-bit Intel Architecture math coprocessors do not signal the overflow exception
when the masked response is not ∞; that is, they signal overflow only when the rounding control
is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞.
Under the most common rounding modes, this difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit Intel Architecture FPU produces, under
overflow conditions, a result that is different in the least significant bit of the significand,
compared to the result on a 16-bit Intel Architecture math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit
Intel Architecture FPUs. When the result is stored in the stack, the significand is rounded
according to the precision control (PC) field of the FPU control word or according to the opcode.
On the 16-bit Intel Architecture math coprocessors, the precision exception is not flagged and
the significand is not rounded. The impact on existing software is that if the result is stored on
the stack, a program running on a 32-bit Intel Architecture FPU produces a different result under
overflow conditions than on a 16-bit Intel Architecture math coprocessor. The difference is
apparent only to the exception handler. This difference is for IEEE Standard 754 compatibility.

10-11

INTEL ARCHITECTURE COMPATIBILITY

10.9.6.3. NUMERIC UNDERFLOW EXCEPTION (#U)

When the underflow exception is masked on the 32-bit Intel Architecture FPUs, the underflow
exception is signaled when both the result is tiny and denormalization results in a loss of accu-
racy. When the underflow exception is unmasked and the instruction is supposed to store the
result on the stack, the significand is rounded to the appropriate precision (according to the PC
flag in the FPU control word, for those instructions controlled by PC, otherwise to extended
precision), after adjusting the exponent.

When the underflow exception is masked on the 16-bit Intel Architecture math coprocessors and
rounding is toward 0, the underflow exception flag is raised on a tiny result, regardless of loss
of accuracy. When the underflow exception is not masked and the destination is the stack, the
significand is not rounded, but instead is left as is.

When the underflow exception is masked, this difference has no impact on existing software.
The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit Intel Architecture
FPU produces a different result during underflow conditions than on a 16-bit Intel Architecture
math coprocessor if the result is stored on the stack. The difference is only in the least significant
bit of the significand and is apparent only to the exception handler.

10.9.6.4. EXCEPTION PRECEDENCE

There is no difference in the precedence of the denormal-operand exception on the 32-bit Intel
Architecture FPUs, whether it be masked or not. When the denormal-operand exception is not
masked on the 16-bit Intel Architecture math coprocessors, it takes precedence over all
other exceptions. This difference causes no impact on existing software, but some unneeded
normalization of denormalized operands is prevented on the Intel486 processor and Intel387
math coprocessor.

10.9.6.5. CS AND EIP FOR FPU EXCEPTIONS

On the Intel 32-bit Intel Architecture FPUs, the values from the CS and EIP registers saved for
floating-point exceptions point to any prefixes that come before the floating-point instruction.
On the 8087 math coprocessor, the saved CS and IP registers points to the floating-point
instruction.

10.9.6.6. FPU ERROR SIGNALS

The floating-point error signals to the Pentium Pro, Pentium, and Intel486 processors do not
pass through an interrupt controller; an INT# signal from an Intel387, Intel287 or 8087 math
coprocessors does. If an 8086 processor uses another exception for the 8087 interrupt, both
exception vectors should call the floating-point-error exception handler. Some instructions in a
floating-point-error exception handler may need to be deleted if they use the interrupt controller.
The Pentium Pro, Pentium, and Intel486 processors have signals that, with the addition of
external logic, support reporting for emulation of the interrupt mechanism used in many
personal computers.

10-12

INTEL ARCHITECTURE COMPATIBILITY

On the Pentium Pro, Pentium, and Intel486 processors, an undefined floating-point opcode will
cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes,
like legal floating-point opcodes, cause a device not available exception (#NM, interrupt vector
7) when either the TS or EM flag in control register CR0 is set. The Pentium Pro, Pentium, and
Intel486 processors do not check for floating-point error conditions on encountering an unde-
fined floating-point opcode.

10.9.6.7. ASSERTION OF THE FERR# PIN

When using this external interrupt mechanism, the FERR# pin must be connected to an input to
an external interrupt controller. An external interrupt is then generated when the FERR# output
drives the input to the interrupt controller. For the Pentium Pro and Intel386 processors, an
unmasked floating-point exception always causes the FERR# pin to be asserted upon comple-
tion of the instruction that caused the exception; for the Pentium and Intel486 processors, an
unmasked floating-point exception always causes the FERR# pin to be asserted prior to
executing the next waiting floating-point instruction. See “Software Exception Handling” on
page 7-41 for more information on the use of the FERR# pin.

10.9.6.8. INVALID OPERATION EXCEPTION ON DENORMALS

An invalid-operation exception is not generated on the 32-bit Intel Architecture FPUs upon
encountering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon
conversion to BCD or to integer. The operation proceeds by first normalizing the value. On the
16-bit Intel Architecture math coprocessors, upon encountering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software
running on the 32-bit Intel Architecture FPUs continues to execute in cases where the 16-bit
Intel Architecture math coprocessors trap. The reason for this change was to eliminate an excep-
tion from being raised.

10.9.6.9. ALIGNMENT CHECK EXCEPTIONS (#AC)

If alignment checking is enabled, a misaligned data operand on the Pentium Pro, Pentium, and
Intel486 processors causes an alignment check exception (#AC) when a program or procedure
is running at privilege-level 3, except for the stack portion of the FSAVE/FNSAVE and
FRSTOR instructions.

10.9.6.10. SEGMENT NOT PRESENT EXCEPTION DURING FLDENV

On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of
an FLDENV instruction, it can happen that part of the environment is loaded and part not. In
such cases, the FPU control word is left with a value of 007FH. The Pentium Pro and Pentium
processors ensures the internal state is correct at all times by attempting to read the first and last
bytes of the environment before updating the internal state.

10-13

INTEL ARCHITECTURE COMPATIBILITY

10.9.6.11. DEVICE NOT AVAILABLE EXCEPTION (#NM)

The device-not-available exception (#NM, interrupt 7) will occur in the Pentium Pro, Pentium,
and Intel486 processors when they encounter a floating-point instruction while either the TS or
EM flag in control register CR0 is set. If the TS and MP flags are set, then a WAIT/FWAIT
instruction will also cause a device-not-available exception. An exception handler should be
included in Pentium Pro, Pentium, or Intel486 processor code to handle these situations.

10.9.6.12. COPROCESSOR SEGMENT OVERRUN EXCEPTION

The coprocessor segment overrun exception (interrupt 9) does not occur in the Pentium Pro,
Pentium, and Intel486 processors. In situations where the Intel387 math coprocessor would
cause an interrupt 9, the Pentium Pro, Pentium, and Intel486 processors simply abort the instruc-
tion. To avoid undetected segment overruns, it is recommended that the floating-point save area
be placed in the same page as the TSS. This placement will prevent the FPU environment from
being lost is a page fault occurs during the execution of an FLDENV or FRSTOR instruction
while the operating system is performing a task switch.

10.9.6.13. GENERAL PROTECTION EXCEPTION (#GP)

A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-
point operand falls outside a segment’s size. An exception handler should be included to report
these programming errors.

10.9.6.14. FLOATING-POINT ERROR EXCEPTION (#MF)

In real mode and protected mode (not including virtual 8086 mode), interrupt vector 16 must
point to the floating-point exception handler. In virtual 8086 mode, the virtual-8086 monitor can
be programmed to accommodate a different location of the interrupt vector for floating-point
exceptions.

10.9.7. Changes to Floating-Point Instructions

This section identifies the differences in floating-point instructions for the various Intel FPU and
math coprocessor architectures, the reason for the differences, and their impact on software.

10.9.7.1. NEW FLOATING-POINT INSTRUCTIONS IN THE INTEL PENTIUM
PRO PROCESSOR

The following floating-point instructions are new in the Pentium Pro processor:

• FCMOVcc (floating-point conditional move) instructions, see “FCMOVcc—Floating-
Point Conditional Move” on page 11-106.

• FCOMI (floating-point compare and set EFLAGS) instructions, see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111.

10-14

INTEL ARCHITECTURE COMPATIBILITY

10.9.7.2. FDIV, FPREM, AND FSQRT INSTRUCTIONS

The 32-bit Intel Architecture FPUs support operations on denormalized operands and, when
detected, an underflow exception can occur, for compatibility with the IEEE Standard 754. The
16-bit Intel Architecture math coprocessors do not operate on denormalized operands or return
underflow results. Instead, they generate an invalid-operation exception when they detect an
underflow condition. An existing underflow exception handler will require change only if it
gives different treatment to different opcodes. Also, it is possible that fewer invalid-operation
exceptions will occur.

10.9.7.3. FSCALE INS TRUCTION

With the 32-bit Intel Architecture FPUs, the range of the scaling operand is not restricted. If (0
< | ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the rounded result
is not exact or if there was a loss of accuracy (masked underflow), the precision exception is
signaled. With the 16-bit Intel Architecture math coprocessors, the range of the scaling operand
is restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The
impact of this difference on exiting software is that different results are delivered on the 32-bit
and 16-bit FPUs and math coprocessors when (0 < | ST(1) | < 1).

10.9.7.4. FPREM1 INSTRUCTION

The 32-bit Intel Architecture FPUs compute a partial remainder according to the IEEE Standard
754 standard. This instruction does not exist on the 16-bit Intel Architecture math coprocessors.
The availability of the FPREM1 instruction has is no impact on existing software.

10.9.7.5. FPREM INSTRUCTION

On the 32-bit Intel Architecture FPUs, the condition code flags C0, C3, C1 in the status word
correctly reflect the three low-order bits of the quotient following execution of the FPREM
instruction. On the 16-bit Intel Architecture math coprocessors, the quotient bits are incorrect
when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This difference does
not affect existing software; software that works around the bug should not be affected.

10.9.7.6. FUCOM, FUCOMP, AND FUCOMPP INSTRUCTIONS

When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit Intel Archi-
tecture FPUs perform unordered compare according to IEEE Standard 754 standard. These
instructions do not exist on the 16-bit Intel Architecture math coprocessors. The availability of
these new instructions has no impact on existing software.

10.9.7.7. FPTAN INSTRUCTION

On the 32-bit Intel Architecture FPUs, the range of the operand for the FPTAN instruction is
much less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction reduces
the operand internally using an internal π/4 constant that is more accurate. The range of the

10-15

INTEL ARCHITECTURE COMPATIBILITY

operand is restricted to (| ST(0) | < π/4) on the 16-bit Intel Architecture math coprocessors; the
operand must be reduced to this range using FPREM. This change has no impact on existing
software.

10.9.7.8. STACK OVERFLOW

On the 32-bit Intel Architecture FPUs, if a stack overflow occurs when the invalid-operation
exception is masked, both the ST(0) and ST(1) registers will contain QNaNs. On the 16-bit Intel
Architecture math coprocessors, the original operand remains unchanged following a stack
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.

10.9.7.9. FSIN, FCOS, AND FSINCOS INSTRUCTIONS

On the 32-bit Intel Architecture FPUs, these instructions perform three common trigonometric
functions. These instructions do not exist on the 16-bit Intel Architecture math coprocessors.
The availability of these instructions has no impact on existing software, but using them
provides a performance upgrade.

10.9.7.10. FPATAN INSTRUCTION

On the 32-bit Intel Architecture FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit Intel Architecture math coprocessors, the absolute value of the operand
in register ST(0) must be smaller than the absolute value of the operand in register ST(1). This
difference has impact on existing software.

10.9.7.11. F2XM1 INSTRUCTION

The 32-bit Intel Architecture FPUs support a wider range of operands (–1 < ST (0) < + 1) for
the F2XM1 instruction. The supported operand range for the 16-bit Intel Architecture math
coprocessors is (0≤ ST(0)≤ 0.5). This difference has no impact on existing software.

10.9.7.12. FLD INSTRUCTION

On the 32-bit Intel Architecture FPUs, when using the FLD instruction to load an extended-real
value, a denormal-operand exception is not generated because the instruction is not arithmetic.
The 16-bit Intel Architecture math coprocessors do report a denormal-operand exception in this
situation. This difference does not affect existing software.

On the 32-bit Intel Architecture FPUs, loading a denormal value that is in single- or double-real
format causes the value to be converted to extended-real format. Loading a denormal value on
the 16-bit Intel Architecture math coprocessors causes the value to be converted to an unnormal.
If the next instruction is FXTRACT or FXAM, the 32-bit Intel Architecture FPUs will give a
different result than the 16-bit Intel Architecture math coprocessors. This change was made for
IEEE Standard 754 compatibility.

10-16

INTEL ARCHITECTURE COMPATIBILITY

On the 32-bit Intel Architecture FPUs, loading an SNaN that is in single- or double-real format
causes the FPU to generate an invalid-operation exception. The 16-bit Intel Architecture math
coprocessors do not raise an exception when loading a signaling NaN. The invalid-operation
exception handler for 16-bit math coprocessor software needs to be updated to handle this condi-
tion when porting software to 32-bit FPUs. This change was made for IEEE Standard 754
compatibility.

10.9.7.13. FXTRACT INSTRUCTION

On the 32-bit Intel Architecture FPUs, if the operand is 0 for the FXTRACT instruction, the
divide-by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is +∞,
no exception is reported. If the operand is 0 on the 16-bit Intel Architecture math coprocessors,
0 is delivered to register ST(1) and no exception is reported. If the operand is +∞, the invalid-
operation exception is reported. These differences have no impact on existing software. Soft-
ware usually bypasses 0 and ∞. This change is due to the IEEE 754 recommendation to fully
support the “logb” function.

10.9.7.14. LOAD CONSTANT INSTRUCTIONS

On 32-bit Intel Architecture FPUs, rounding control is in effect for the load constant instruc-
tions. Rounding control is not in effect for the 16-bit Intel Architecture math coprocessors.
Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the
16-bit Intel Architecture math coprocessors when rounding control is set to round to nearest or
round to +∞. They are the same for the FLDL2T instruction when rounding control is set to
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit Intel Archi-
tecture math coprocessors in the least significant bit of the mantissa if rounding control is set to
round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions; they
are different for the FLDL2T instruction if round to +∞ is specified. These changes were imple-
mented for compatibility with IEEE 754 recommendations.

10.9.7.15. FSETPM INSTRUCTION

With the 32-bit Intel Architecture FPUs, the FSETPM instruction is treated as FNOP (no oper-
ation). This instruction informs the Intel287 math coprocessor that the processor is in protected
mode. This change has no impact on existing software. The 32-bit Intel Architecture FPUs
handle all addressing and exception-pointer information, whether in protected mode or not.

10.9.7.16. FXAM INSTRUCTION

With the 32-bit Intel Architecture FPUs, if the FPU encounters an empty register when
executing the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101
or 1111. The 16-bit Intel Architecture math coprocessors may generate these combinations,
among others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

10-17

INTEL ARCHITECTURE COMPATIBILITY

10.9.7.17. FSAVE AND FSTENV INSTRUCTIONS

With the 32-bit Intel Architecture FPUs, the address of a memory operand pointer stored by
FSAVE or FSTENV is undefined if the previous floating-point instruction did not refer to
memory

10.9.8. Transcendental Instructions

The floating-point results of the Pentium Pro and Pentium processors for transcendental instruc-
tions in the core range may differ from the Intel486 processors by about 2 or 3 ulps (see “Tran-
scendental Instruction Accuracy” on page 7-37). Condition code flag C1 of the status word may
differ as a result. The exact threshold for underflow and overflow will vary by a few ulps. The
Pentium Pro and Pentium processor’s results will have a worst case error of less than 1 ulp when
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcen-
dental instructions are guaranteed to be monotonic, with respect to the input operands,
throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) on the
32-bit Intel Architecture FPUs. The round-up flag is undefined for these instructions on the
16-bit Intel Architecture math coprocessors. This difference has no impact on existing software.

10.9.9. Obsolete Instructions

The 8087 math coprocessor instructions FENI and FDISI and the Intel287 math coprocessor
instruction FSETPM are treated as integer NOP instructions in the 32-bit Intel Architecture
FPUs. If these opcodes are detected in the instruction stream, no specific operation is performed
and no internal states are affected.

10.9.10. WAIT/FWAIT Prefix Differences

On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point instruc-
tion (one which itself automatically synchronizes with the previous floating-point instruction),
the WAIT/FWAIT instruction is treated as a no-op. Pending floating-point exceptions from a
previous floating-point instruction are processed not on the WAIT/FWAIT instruction but on the
floating-point instruction following the WAIT/FWAIT instruction. In such a case, the report of
a floating-point exception may appear one instruction later on the Intel486 processor than on a
Pentium Pro or Pentium FPU, or on Intel387 math coprocessor.

10.9.11. Operands Split Across Segments and/or Pages

On the Pentium Pro, Pentium, and Intel486 FPUs, when the first half of an operand to be written
is inside a page or segment and the second half is outside, a memory fault can cause the first half
to be stored but not the second half. In this situation, the Intel387 math coprocessor stores
nothing.

10-18

INTEL ARCHITECTURE COMPATIBILITY

10.9.12. FPU Instruction Synchronization

On the 32-bit Intel Architecture FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point instruction has
completed before completing the next floating-point instruction. No explicit WAIT/FWAIT
instructions are required to assure this synchronization. For the 8087 math coprocessors, explicit
waits are required before each floating-point instruction to ensure synchronization. Although
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit Intel Architec-
ture processors without reassembly, these WAIT instructions are unnecessary.

Since the 32-bit Intel Architecture FPU's do not require WAIT/FWAIT instructions before each
floating-point instruction, 32-bit Intel Architecture assemblers do not automatically generate
these WAIT instructions. The ASM86 assembler, however, automatically precedes every
floating-point instruction with a WAIT instruction. Although floating-point routines generated
using the ASM86 assembler will generally execute correctly on the 32-bit Intel Architecture
FPU's, reassembly using a 32-bit Intel Architecture assembler may result in a more compact
code image and faster execution. The control instructions for the 32-bit Intel Architecture FPU's
can be coded using either a wait or non-wait form of the mnemonic. The wait forms of these
instructions cause a 32-bit Intel Architecture assembler to precede the floating-point instruction
with a WAIT instruction, in the identical manner as does ASM86.

11-1

CHAPTER 11
INSTRUCTION SET REFERENCE

This chapter describes the complete Pentium Pro processor instruction set, including the integer,
floating-point, and system instructions. The instruction descriptions are arranged in alphabetical
order. For each instruction, the forms are given for each operand combination, including the
opcode, operands required, and a description. Also given for each instruction are a description
of the instruction and its operands, an operational description, a description of the effect of the
instructions on flags in the EFLAGS register, and a summary of the exceptions that can be
generated.

The following sections describe the instruction format for all Intel Architecture processors and
a description of the information contained in the various sections of the instruction descriptions.

11.1. INSTRUCTION FORMAT

All instruction encodings are subsets of the general instruction format shown in Figure 11-1 on
page 11-1. Instructions consist of optional instruction prefixes (in any order), one or two primary
opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte and the
SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate data field (if
required).

11.1.1. Instruction Prefixes

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes:

• Lock and repeat prefixes.

— F0H—LOCK prefix.

— F2H—REPNE/REPNZ prefix (used only with string instructions).

Figure 11-1. Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1 or 2 byte
opcode

Up to four
prefixes of

1-byte each
(optional)

11-2

INSTRUCTION SET REFERENCE

— F3H—REP prefix (used only with string instructions).

— F3H—REPE/REPZ prefix (used only with string instructions).

• Segment override.

— 2EH—CS segment override prefix.

— 36H—SS segment override prefix.

— 3EH—DS segment override prefix.

— 26H—ES segment override prefix.

— 64H—FS segment override prefix.

— 65H—GS segment override prefix.

• Operand-size override, 66H

• Address-size override, 67H

For each instruction, one prefix may be used from each of these groups and be placed in any
order. The effect of redundant prefixes (more than one prefix from a group) is undefined and
may vary from processor to processor.

11.1.2. Opcode

The primary opcode is either 1 or 2 bytes. An additional 3-bit opcode field is sometimes encoded
in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These
fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on
the class of operation.

11.1.3. ModR/M and SIB Bytes

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the first byte of the primary
opcode.

• The r/m field can specify a register as an operand or can be combined with the mod field to
encode an addressing mode.

11-3

INSTRUCTION SET REFERENCE

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit
addressing require the SIB byte. The SIB byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Table 11-1 through Table 11-3. The 16-bit addressing forms specified by the ModR/M byte are
in Table 11-1. The 32-bit addressing forms specified by the ModR/M byte are in Table 11-2.
Table 11-3 shows the 32-bit addressing forms specified by the SIB byte.

11.1.4. Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following either the ModR/M or
SIB byte. If a displacement is required, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.

11-4

INSTRUCTION SET REFERENCE

Notes

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The “disp16” nomenclature denotes a 16-bit displacement following the ModR/M byte, to be added to the
index.

3. The “disp8” nomenclature denotes an 8-bit displacement following the ModR/M byte, to be sign-extended
and added to the index.

Table 11-1. 16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
/digit (Opcode)
REG =

AL
AX
EAX
0
000

CL
CX
ECX
1
001

DL
DX
EDX
2
010

BL
BX
EBX
3
011

AH
SP
ESP
4
100

CH
BP1

EBP
5
101

DH
SI
ESI
6
110

BH
DI
EDI
7
111

Effective
Address Mod R/M ModR/M Values in Hexadecimal

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL
ECX/CX/CL
EDX/DX/DL
EBX/BX/BL
ESP/SP/AH
EBP/BP/CH
ESI/SI/DH
EDI/DI/BH

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

11-5

INSTRUCTION SET REFERENCE

Notes

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement following the SIB byte, to be added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement following the SIB byte, to be sign-extended and
added to the index.

Table 11-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
/digit (Opcode)
REG =

AL
AX
EAX
0
000

CL
CX
ECX
1
001

DL
DX
EDX
2
010

BL
BX
EBX
3
011

AH
SP
ESP
4
100

CH
BP
EBP
5
101

DH
SI
ESI
6
110

BH
DI
EDI
7
111

Effective
Address Mod R/M ModR/M Values in Hexadecimal

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

disp8[EAX]3

disp8[ECX]
disp8[EDX]
disp8[EBX];
disp8[--][--]
disp8[EBP]
disp8[ESI]
disp8[EDI]

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

disp32[EAX]
disp32[ECX]
disp32[EDX]
disp32[EBX]
disp32[--][--]
disp32[EBP]
disp32[ESI]
disp32[EDI]

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL
ECX/CX/CL
EDX/DX/DL
EBX/BX/BL
ESP/SP/AH
EBP/BP/CH
ESI/SI/DH
EDI/DI/BH

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

11-6

INSTRUCTION SET REFERENCE

Notes

1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the
following addressing modes:

disp32[index] (MOD=00).
disp8[EBP][index] (MOD=01).
disp32[EBP][index] (MOD=10).

Table 11-3. 32-Bit Addressing Forms with the SIB Byte

r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index SIB Values in Hexadecimal

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[ECX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

11-7

INSTRUCTION SET REFERENCE

11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.

11.2.1. Instruction Format

The following is an example of the format used for each processor instruction description in this
chapter:

CMC—Complement Carry Flag

11.2.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear
in memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

• /r— Indicates that the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

• cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

• ib, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doublewords are given with the low-order
byte first.

• +rb, +rw, +rd— A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The register codes are given in Table
11-4 on page 11-8.

• +i—A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

Opcode Instruction Description

F5 CMC Complement carry flag

11-8

INSTRUCTION SET REFERENCE

11.2.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

• rel8—A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

• rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

• ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of
the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used with the 32-bit attribute.

• r8—One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16—One of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32—One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

• imm8—An immediate byte value. The imm8 symbol is a signed number between –128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

• imm16—An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32,768 and +32,767 inclusive.

Table 11-4. Register Encodings Associates With
the +rb, +rw, and +rd Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7

11-9

INSTRUCTION SET REFERENCE

• imm32—An immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
–2,147,483,648 inclusive.

• r/m8—A byte operand that is either the contents of a byte register (AL, BL, CL, DL, AH,
BH, CH, and DH), or a byte from memory.

• r/m16—A word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, and DI. The
contents of memory are found at the address provided by the effective address compu-
tation.

• r/m32—A doubleword register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP,
ESI, and EDI. The contents of memory are found at the address provided by the effective
address computation.

• m—A 16- or 32-bit memory operand.

• m8—A memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

• m16—A memory word addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

• m32—A memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

• m64—A memory quadword (used only by the CMPXCHG8B instruction).

• m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

• m16&32, m16&16, m32&32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

• moffs8, moffs16, moffs32—A simple memory variable (memory offset) of type BYTE,
WORD, or DWORD used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the
instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

• Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

• m32real, m64real, m80real—A single-, double-, and extended-real (respectively)
floating-point operand in memory.

11-10

INSTRUCTION SET REFERENCE

• m16int, m32int, m64int—A word-, short-, and long-integer (respectively) floating-point
operand in memory.

• ST or ST(0)—The top element of the FPU register stack.

• ST(i)—The ith element from the top of the FPU register stack. (i = 0 through 7)

11.2.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following Description and Operation sections contain more details
of the instruction's operation.

11.2.1.4. DESCRIPTION

The “Description” section describes the purpose of the instructions and the required operands.
It also discusses the effect of the instruction on flags.

11.2.2. Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register SI relative
to SI's default segment (DS) or overridden segment.

• Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠ , ≥, and ≤ are relational operators used to compare two values, meaning
equal, not equal, greater or equal, less or equal, respectively. A relational expression such
as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize—The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the

11-11

INSTRUCTION SET REFERENCE

following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD
THEN OperandSize ← 32;

FI;
FI;

See “Operand-Size and Address-Size Attributes” on page 3-13 for general guidelines on
how these attributes are determined.

• StackAddrSize—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for Stack” on
page 4-3).

• SRC—Represents the source operand.

• DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
–10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value –10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

• Push(value)—Pushes a value onto the procedure stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the Operation section in
“PUSH—Push Word or Doubleword Onto the Stack” on page 11-317 for more information
on the push operation.

• Pop() removes the value from the top of the procedure stack and returns it. The statement
EAX ← Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return
either a word or a doubleword depending on the operand-size attribute. See the Operation
section in “POP—Pop a Value from the Stack” on page 11-308 for more information on the
pop operation.

• PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

• Switch-Tasks—Performs a standard task switch.

11-12

INSTRUCTION SET REFERENCE

• Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit[EAX, 21] is illustrated in Figure 11-2 on page 11-12.

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 11-3 on page 11-12.

11.2.3. Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is set to 0; when it is set, it is set to 1. The arithmetic and
logical instructions usually assign values to the status flags in a uniform manner (see Appendix
A, EFLAGS Cross-Reference). Non-conventional assignments are described in the Operation
section. The values of flags listed as undefined may be changed by the instruction in an indeter-
minate manner. Flags that are not listed are unchanged by the instruction.

Figure 11-2. Bit Offset for BIT[EAX,21]

Figure 11-3. Memory Bit Indexing

02131

BitOffset = 21

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset = +13

BitOffset = −11

BitBase − 1BitBase

11-13

INSTRUCTION SET REFERENCE

11.2.4. FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

11.2.5. Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given
a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 11-5 on page 11-13 associates each two-letter mnemonic with the corresponding
interrupt vector number and exception name. See Chapter 5, Interrupt and Exception Handling,
in the Pentium Pro Family Developer’s Manual, Volume 3 for a detailed description of the excep-
tions.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

Table 11-5. Exception Mnemonics, Names, and Vector Numbers

Vector
No. Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Exception Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode UD2 instruction or reserved opcode.

 7 #NM Device Not Available Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Any instruction.

10 #TS Invalid TSS Task switch.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Fault Stack operations.

13 #GP General Protection Any memory reference.

14 #PF Page Fault Any memory reference.

16 #MF Floating-Point Error Floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Any data reference in memory.

18 #MC Machine Check Model dependent.

11-14

INSTRUCTION SET REFERENCE

11.2.6. Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode.

11.2.7. Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode.

11.2.8. Floating-Point Exceptions

The “Floating-Point Exceptions” section lists additional exceptions that can occur when a
floating-point instruction is executed in any mode. All of these exception conditions result in a
floating-point error exception (#MF, vector 16) being generated. Table 11-6 on page 11-14 asso-
ciates each one- or two-letter mnemonic with the corresponding exception name. See “Floating-
Point Exception Conditions” on page 7-44 for a detailed description of these exceptions.

11.3. INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of each of the Pentium Pro
processor instructions.

Table 11-6. Floating-Point Exception Mnemonics and Names

Vector
No. Mnemonic Name Source

16
#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- FPU stack overflow or underflow
- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized
operation

Attempting to operate on a denormal
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result
(precision)

Inexact result (precision)

11-15

INSTRUCTION SET REFERENCE

AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the CF and
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH
register is unchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL ← (AL + 6);
AH ← AH + 1;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

37 AAA ASCII adjust AL after addition

11-16

INSTRUCTION SET REFERENCE

AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AL register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit number in registers AH and AL.

Operation

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH;
AH ← 0

The immediate value (imm8) is taken from the second byte of the instruction, which under
normal assembly is 0AH (10 decimal). However, this immediate value can be changed to
produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

11-17

INSTRUCTION SET REFERENCE

AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
BCD values. The AX register is the implied source and destination operand for this instruction.
The AAM instruction is only useful when it follows an MUL instruction that multiplies (binary
multiplication) two unpacked BCD values and stores a word result in the AX register. The AAM
instruction then adjusts the contents of the AX register to contain the correct 2-digit unpacked
BCD result.

Operation

tempAL ← AL;
AH ← tempAL / imm8;
AL ← tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction, which under
normal assembly is 0AH (10 decimal). However, this immediate value can be changed to
produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

11-18

INSTRUCTION SET REFERENCE

AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked
BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;

ELSE
CF ← 0;
AF ← 0;

FI;
AL ← AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0.
The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction

11-19

INSTRUCTION SET REFERENCE

ADC—Add with Carry

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. The state of the CF flag represents a carry from a previous addition. When an imme-
diate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

11-20

INSTRUCTION SET REFERENCE

ADC—Add with Carry (continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-21

INSTRUCTION SET REFERENCE

ADD—Add

Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. When an
immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

11-22

INSTRUCTION SET REFERENCE

ADD—Add (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-23

INSTRUCTION SET REFERENCE

AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8

83 /4 ib AND r/m32,imm8 r/m32 AND imm8

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

11-24

INSTRUCTION SET REFERENCE

AND—Logical AND (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-25

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand can be a word
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the privilege level of
the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the application program’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the procedure stack following a procedure call.)

See “Checking Caller Access Privileges” in Chapter 4, Protection, of the Pentium Pro Family
Developer’s Manual, Volume 3 for more information about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF ← 1;
DEST(RPL) ← SRC(RPL);

ELSE
ZF ← 0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to 0.

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16

11-26

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector (continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual 8086 mode.

11-27

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified the
second operand (bounds operand). The array index is a signed integer located in a register. The
bounds operand is a memory location that points to a pair of signed doubleword-integers (when
the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size
attribute is 16). The first doubleword (or word) is the lower bound of the array and the second
doubleword (or word) is the upper bound of the array. The array index must be greater than or
equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes.
If the index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When
a this exception is generated, the saved return instruction pointer points to the BOUND
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation

IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected

None.

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by
m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by
m16&16

11-28

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#BR If the bounds test fails.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#BR If the bounds test fails.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-29

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32

11-30

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-31

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32

11-32

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-33

INSTRUCTION SET REFERENCE

BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits
24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is
provided for converting little-endian values to big-endian format and vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

Operation

TEMP ← DEST
DEST(7..0) ← TEMP(31..24)
DEST(15..8) ← TEMP(23..16)
DEST(23..16) ← TEMP(15..8)
DEST(31..24) ← TEMP(7..0)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel Architecture processors earlier than the
Intel486 processor family. For compatibility with this instruction, include functionally-equiva-
lent code for execution on Intel processors earlier than the Intel486 processor family.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.

11-34

INSTRUCTION SET REFERENCE

BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand) and stores the value of the bit in
the CF flag. The bit base operand can be a register or a memory location; the bit offset operand
can be a register or an immediate value. If the bit base operand specifies a register, the instruc-
tion takes the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively (see Figure 11-2 on page
11-12). If the bit base operand specifies a memory location, it represents the address of the byte
in memory that contains the bit base (bit 0 of the specified byte) of the bit string (see Figure 11-3
on page 11-12). The offset operand then selects a bit position within the range −231

 to 231
 − 1 for

a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The processor will ignore the
high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation

CF ← Bit(BitBase, BitOffset)

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag

11-35

INSTRUCTION SET REFERENCE

BT—Bit Test (continued)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-36

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects
a bit position within the range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate
offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement

11-37

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-38

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects
a bit position within the range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate
offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear

11-39

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-40

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value. If the bit base
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register,
respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory loca-
tion, it represents the address of the byte in memory that contains the bit base (bit 0 of the spec-
ified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects a bit
position within the range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set

11-41

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-42

INSTRUCTION SET REFERENCE

CALL—Call Procedure

Description

Saves procedure linking information on the procedure stack and jumps to the procedure (called
procedure) specified with the destination (target) operand. The target operand specifies the
address of the first instruction in the called procedure. This operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

• Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See “Calling Procedures Using CALL and RET” on page 4-4 for detailed
information on near, far, and inter-privilege-level calls; see Chapter 6 in the Pentium Pro Family
Developer’s Manual, Volume 3 for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which contains
the address of the instruction following the CALL instruction) onto the procedure stack (for use
later as a return-instruction pointer. The processor then jumps to the address specified with the
target operand for the called procedure. The target operand specifies either an absolute address
in the code segment (that is an offset from the base of the code segment) or a relative offset (a
signed offset relative to the current value of the instruction pointer in the EIP register, which
points to the instruction following the call). An absolute address is specified directly in a register
or indirectly in a memory location (r/m16 or r/m32 target-operand form). (When accessing an
absolute address indirectly using the stack pointer (ESP) as a base register, the base value used
is the value of the ESP before the instruction executes.) A relative offset (rel16 or rel32) is gener-
ally specified as a label in assembly code, but at the machine code level, it is encoded as a signed,
16- or 32-bit immediate value, which is added to the instruction pointer.

Opcode Instruction Description

E8 cw CALL rel16 Call near, displacement relative to next instruction

E8 cd CALL rel32 Call near, displacement relative to next instruction

FF /2 CALL r/m16 Call near, r/m16 indirect

FF /2 CALL r/m32 Call near, r/m32 indirect

9A cd CALL ptr16:16 Call far, to full pointer given

9A cp CALL ptr16:32 Call far, to full pointer given

FF /3 CALL m16:16 Call far, address at r/m16

FF /3 CALL m16:32 Call far, address at r/m32

11-43

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

When executing a near call, the operand-size attribute determines the size of the target operand
(16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly into the EIP
register. When a relative offset is specified, it is added to the value of the EIP register. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0s, resulting
in a maximum instruction pointer size of 16 bits. The CS register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and EIP regis-
ters onto the procedure stack for use as a return-instruction pointer. The processor then performs
a far jump to the code segment and address specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the
pointer method, the segment and address of the called procedure is encoded in the instruction
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from the first
64 Kbytes of the 32-bit code segment, because the operand-size attribute of the instruction is set
to 16, allowing only a 16-bit return address offset to be saved. Also, the call should be made
using a 16-bit call gate so that 16-bit values will be pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to access a code
segment at a different privilege level or to switch tasks. Here, the processor uses the segment
selector part of the far address to access the segment descriptor for the segment being jumped
to. Depending on the value of the type and access rights information in the segment selector, the
CALL instructon can perform:

• A far call to the same privilege level (described in the previous paragraph).

• An far call to a different privilege level.

• A task switch.

When executing an inter-privilege-level far call, the code segment for the procedure being called
is accessed through a call gate. The segment selector specified by the target operand identifies
the call gate. In executing a call through a call gate where a change of privilege level occurs, the
processor switches to the stack for the privilege level of the called procedure, pushes the current
values of the CS and EIP registers and the SS and ESP values for the old stack onto the new
stack, then performs a far jump to the new code segment. The new code segment is specified in
the call gate descriptor; the new stack segment is specified in the TSS for the currently running
task. The jump to the new code segment occurs after the stack switch. On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, a set
of parameters from the calling procedures stack, and the segment selector and instruction pointer
for the calling procedure’s code segment. (A value in the call gate descriptor determines how
many parameters to copy to the new stack.)

11-44

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

Finally, the processor jumps to the address of the procedure being called within the new code
segment. The procedure address is the offset specified by the target operand. Here again, the
target operand can specify the far address of the call gate and procedure either directly with a
pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the CALL instruction, is similar to executing a call through a call
gate. Here the target operand specifies the segment selector of the task gate for the task being
switched to and the address of the procedure being called in the task. The task gate in turn points
to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The CALL instruction can also specify the segment selector of the TSS directly. See
Chapter 6, Task Management, in Pentium Pro Family Developer’s Manual, Volume 3 the for
detailed information on the mechanics of a task switch.

Operation

IF near call
THEN IF near relative call

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:

FI;

11-45

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)
IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)

THEN
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

11-46

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF stack not large enough for return address THEN #SS(0); FI;
tempEIP ← DEST(offset)
IF OperandSize=16

THEN
tempEIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

FI;
END;

11-47

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)
CALL-GATE:

IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL ≠ DPL of code segment

OR stack segment DPL ≠ DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;

11-48

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL) ← CPL

END;

11-49

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);

FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

11-50

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code segment
limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

11-51

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

11-52

INSTRUCTION SET REFERENCE

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension (see Figure 6-5 on page 6-18).
The CBW (convert byte to word) instruction copies the sign (bit 7) in the source operand into
every bit in the AH register. The CWDE (convert word to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX ← SignExtend(AX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

98 CBW AX ← sign-extend of AL

98 CWDE EAX ← sign-extend of AX

11-53

INSTRUCTION SET REFERENCE

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.

11-54

INSTRUCTION SET REFERENCE

CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF ← 0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag

11-55

INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation

DF ← 0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag

11-56

INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag
causes the processor to ignore maskable external interrupts. The IF flag and the CLI and STI
instruction have no affect on the generation of exceptions and NMI interrupts.

The following decision table indicates the action of the CLI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running
program or procedure (top of the table).

Notes
X Don't care
N Action in column 1 not taken
Y Action in column 1 taken

Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 0;
ELSE

IF VM = 0 (* Executing in protected mode *)
THEN

IF CPL ≤ IOPL
THEN

IF ← 0;
ELSE

#GP(0);
FI;

FI;

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X ≤ IOPL X > IOPL X

IOPL X X = 3 X < 3

IF ← 0 Y Y Y N N

#GP(0) N N N Y Y

11-57

INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag (continued)
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 0
ELSE

#GP(0);
FI;

FI;
FI;

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not affected.
The other flags in the EFLAGS register are unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

11-58

INSTRUCTION SET REFERENCE

CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in
Chapter 2, “Control Registers” , of the Pentium Pro Family Developer’s Manual, Volume 3 for
more information about this flag.

Operation

CR0(TS) ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0

11-59

INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF ← NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F5 CMC Complement CF flag

11-60

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 cw/cd CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 cw/cd CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 cw/cd CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 cw/cd CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 cw/cd CMOVB r16, r/m16 Move if below (CF=1)

0F 42 cw/cd CMOVB r32, r/m32 Move if below (CF=1)

0F 46 cw/cd CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 cw/cd CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 cw/cd CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 cw/cd CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 cw/cd CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 cw/cd CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F cw/cd CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F cw/cd CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D cw/cd CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D cw/cd CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C cw/cd CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C cw/cd CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E cw/cd CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 cw/cd CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 cw/cd CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 cw/cd CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 cw/cd CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 cw/cd CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 cw/cd CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 cw/cd CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 cw/cd CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 cw/cd CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 cw/cd CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 cw/cd CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 cw/cd CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E cw/cd CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C cw/cd CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C cw/cd CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D cw/cd CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D cw/cd CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F cw/cd CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F cw/cd CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

11-61

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (continued)

Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CMOVcc instruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode 0F 47H.

Opcode Instruction Description

0F 41 cw/cd CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 cw/cd CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B cw/cd CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B cw/cd CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 cw/cd CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 cw/cd CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 cw/cd CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 cw/cd CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 cw/cd CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 cw/cd CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A cw/cd CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A cw/cd CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A cw/cd CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A cw/cd CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B cw/cd CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B cw/cd CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 cw/cd CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 cw/cd CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 cw/cd CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 cw/cd CMOVZ r32, r/m32 Move if zero (ZF=1)

11-62

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they may not
be supported by all the processors in the family. Software can determine if the CMOVcc instruc-
tions are supported by checking the processor’s feature information with the CPUID instruction
(see “CPUID—CPU Identification” on page 11-73).

Operation

temp ← DEST
IF condition TRUE

THEN
DEST ← SRC

ELSE
DEST ← temp

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

11-63

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-64

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands

Description

Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi-
tion Codes, shows the relationship of the status flags and the condition codes.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32

11-65

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-66

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the
EFLAGS register according to the results. The first source operand specifies the memory loca-
tion at the address DS:ESI and the second source operand specifies the memory location at
address ES:EDI. (When the operand-size attribute is 16, the SI and DI register are used as the
source-index and destination-index registers, respectively.) The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and double-
word versions of the CMPS instructions. They are simpler to use, but provide no type or segment
checking. (For the CMPS instruction, “DS:ESI” and “ES:EDI” must be explicitly specified in
the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.)
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations,
or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” on page 11-333 for a description of the REP prefix.

Opcode Instruction Description

A6 CMPS DS:(E)SI, ES:(E)DI Compares byte at address DS:(E)SI with byte at
address ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:SI, ES:DI Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at
address ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

11-67

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String
Operands (continued)

Operation

temp ←SRC1 − SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
THEN DI ← 2;
ELSE DI ← –2;

FI;
ELSE (* doubleword comparison *)

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-68

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String
Operands (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-69

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with
the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST

THEN
ZF ← 1
DEST ← SRC

ELSE
ZF ← 0
accumulator ← DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded
into r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is
loaded into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is
loaded into r/m32. Else, clear ZF and load r/m32 into AL

11-70

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

11-71

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Operation

IF (EDX:EAX = DEST)
ZF ← 1
DEST ← ECX:EBX

ELSE
ZF ← 0
EDX:EAX ← DEST

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

11-72

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium processors.

11-73

INSTRUCTION SET REFERENCE

CPUID—CPU Identification

Description

Provides processor identification information in registers EAX, EBX, ECX, and EDX. This
information identifies Intel as the vendor, gives the family, model, and stepping of processor,
feature information, and cache information. An input value loaded into the EAX register deter-
mines what information is returned, as shown in Table 11-7.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed before the next instruction is fetched and
executed (see “Serializing Instructions” in Chapter 7, Multiple Processor Management, of the
Pentium Pro Family Developer’s Manual, Volume 3).

When the input value in register EAX is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register. For the Pentium Pro processor, the highest recog-
nized value is 2. A vendor identification string is returned in the EBX, EDX, and ECX registers.
For Intel processors, the vendor identification string is “GenuineIntel” as follows:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)

EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)

ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

When the input value is 1, the processor returns version information in the EAX register and
feature information in the EDX register (see Figure 11-4 on page 11-74).

Opcode Instruction Description

0F A2 CPUID EAX ← Processor identification information

Table 11-7. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

0 EAX
EBX
ECX
EDX

Maximum CPUID Input Value (2 for the Pentium Pro Processor)
"Genu"
"ineI"
"ntel"

1 EAX
EBX
ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Reserved
Reserved
Feature Information

2 EAX
EBX
ECX
EDX

Cache Information
Cache Information
Cache Information
Cache Information

11-74

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

The version information consists of an Intel Architecture family identifier, a model identifier, a
stepping ID, and a processor type. The model, family, and processor type for the first processor
in the Intel Pentium Pro family is as follows:

• Model—0001B

• Family—0110B

• Processor Type—00B

See “Intel Application Note 485 — Intel Processor Identification With the CPUID Instruction”
and the “Intel Pentium Pro Processor Specification Update” for more information on identifying
earlier Intel Architecture processors. The available processor types are given in Table 11-8 on
page 11-75. Intel releases information on stepping IDs as needed.

Figure 11-4. Version and Feature Information in Registers EAX and EDX

31

APIC—APIC on Chip
CXS—CMPXCHG8B Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR—RDMSR and WRMSR Support
TSC—Time Stamp Counter

MTRR—Mem. Type Range Req.

CMOV—Cond. Move/Cmp. Inst.
MCA—Machine Check Arch.

15 1314 12 9 8 7 6 5 4 3 2 1 0

PGE—PTE Global Bit

PSE—Page Size Extensions
DE—Debugging Extensions
VME—Virtual 8086 Mode Enhancement
FPU—FPU on Chip

Reserved

EDX

31 12 11 8 7 4 3 0

EAX

Family (0110B for the Pentium Pro Processor Family)
Model (Beginning with 0001B)

11 1016

1314

Processor Type

ModelFamily
Stepping

ID

11-75

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Note
* Not applicable to Intel386 and Intel486 processors.

Table 11-9 on page 11-75 shows the encoding of the feature flags in the EDX register. A feature
flag set to 1 indicates the corresponding feature is supported. Software should identify Intel as
the vendor to properly interpret the feature flags.

Table 11-8. Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive Processor 01B

Dual processor * 10B

Intel reserved. 11B

Table 11-9. Feature Flags Returned in EDX Register

Bit Feature Description

0 FPU—Floating Point Unit
on Chip

Processor contains an FPU and executes the Intel387
instruction set.

1 VME—Virtual 8086 Mode
Enhancements

Processor supports the following virtual 8086 mode
enhancements:
• CR4.VME bit enables virtual 8086 mode extensions.
• CR4.PVI bit enables protected-mode virtual interrupts.
• Expansion of the TSS with the software indirection bitmap.
• EFLAGS.VIF bit enables the virtual interrupt flag.
• EFLAGS.VIP bit enables the virtual interrupt pending flag.

2 DE—Debugging
Extensions

Processor supports I/O breakpoints, including the CR4.DE bit
for enabling debug extensions and optional trapping of access
to the DR4 and DR5 registers.

3 PSE—Page Size
Extensions

Processor supports 4-Mbyte pages, including the CR4.PSE bit
for enabling page size extensions, the modified bit in page
directory entries (PDEs), page directory entries, and page table
entries (PTEs).

4 TSC—Time Stamp
Counter

Processor supports the RDTSC (read time stamp counter)
instruction, including the CR4.TSD bit that, along with the CPL,
controls whether the time stamp counter can be read.

5 MSR—Model Specific
Registers

Processor supports the RDMSR (read model-specific register)
and WRMSR (write model-specific register) instructions.

6 PAE—Physical Address
Extension

Processor supports physical addresses greater than 32 bits,
the extended page-table-entry format, an extra level in the
page translation tables, and 2-MByte pages. The CR4.PAE bit
enables this feature. The number of address bits is
implementation specific. The Pentium Pro processor supports
36 bits of addressing when the PAE bit is set.

11-76

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Table 11-9. Feature Flags Returned in EDX Register (continued)

When the input value is 2, the processor returns information about the processor’s internal
caches and TBLs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers
is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The Pentium Pro family of processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains
valid information (cleared to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 11-10 on page 11-77 shows the encoding of these descriptors.

Bit Feature Description

7 MCE—Machine Check
Exception

Processor supports the CR4.MCE bit, enabling machine check
exceptions. However, this feature does not define the model-
specific implementations of machine-check error logging, reporting,
or processor shutdowns. Machine-check exception handlers might
have to check the processor version to do model-specific
processing of the exception or check for the presence of the
standard machine-check feature.

8 CX8—CMPXCHG8B
Instruction

Processor supports the CMPXCHG8B (compare and exchange 8
bytes) instruction.

9 APIC Processor contains an on-chip Advanced Programmable Interrupt
Controller (APIC) and it has been enabled and is available for use.

10,11 Reserved

12 MTRR—Memory Type
Range Registers

Processor supports machine-specific memory-type range registers
(MTRRs). The MTRRs contains bit fields that indicate the
processor’s MTRR capabilities, including which memory types the
processor supports, the number of variable MTRRs the processor
supports, and whether the processor supports fixed MTRRs.

13 PGE—PTE Global Flag Processor supports the CR4.PGE flag enabling the global bit in
both PTDEs and PTEs. These bits are used to indicate translation
lookaside buffer (TLB) entries that are common to different tasks
and need not be flushed when control register CR3 is written.

14 MCA—Machine Check
Architecture

Processor supports the MCG_CAP (machine check global
capability) MSR. The MCG_CAP register indicates how many
banks of error reporting MSRs the processor supports.

15 CMOV—Conditional
Move and Compare
Instructions

Processor supports the CMOVcc instruction and, if the FPU feature
flag (bit 0) is also set, supports the FCMOVcc and FCOMI
instructions.

16-31 Reserved

11-77

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

The first member of the Pentium Pro processor family will return the following information
about caches and TBLs when the CPUID instruction is executed with an input value of 2:

EAX 03 02 01 01H
EBX 0H
ECX 0H
EDX 06 04 0A 42H

These values are interpreted as follows:

• The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TBLs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— 01H—A 64-entry instruction TBL (4-way set associative) for mapping 4-KByte
pages.

— 02H—A 4-entry instruction TBL (4-way set associative) for mapping 4-MByte pages.

— 03H—A 64-entry data TBL (4-way set associative) for mapping 4-KByte pages.

• The descriptors in registers EBX and ECX are valid, but contain null descriptors.

Table 11-10. Encoding of Cache and TBL Descriptors.

Descriptor
Value

Cache or TBL Description

00H Null descriptor

01H Instruction TBL: 4K-Byte Pages, 4-way set associative, 64 entries

02H Instruction TBL: 4M-Byte Pages, 4-way set associative, 4 entries

03H Data TBL: 4K-Byte Pages, 4-way set associative, 64 entries

04H Data TBL: 4M-Byte Pages, 4-way set associative, 8 entries

06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size

0AH Data cache: 8K Bytes, 2-way set associative, 32 byte line size

41H Unified cache: 128K Bytes, 4-way set associative, 32 byte line size

42H Unified cache: 256K Bytes, 4-way set associative, 32 byte line size

43H Unified cache: 512K Bytes, 4-way set associative, 32 byte line size

11-78

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

— 42H—A 256-KByte unified cache (the L2 cache), 4-way set associative, with a
32-byte cache line size.

— 0AH—An 8-KByte data cache (the L1 data cache), 2-way set associative, with a
32-byte cache line size.

— 04H—An 8-entry data TBL (4-way set associative) for mapping 4M-byte pages.

— 06H—An 8-KByte instruction cache (the L1 instruction cache), 4-way set associative,
with a 32-byte cache line size.

Operation

CASE (EAX) OF
EAX = 0:

EAX ← highest input value understood by CPUID; (* 2 for Pentium Pro processor *)
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[31:12] ← Reserved;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Feature flags; (* See Figure 11-4 *)

BREAK;
EAX = 2:

EAX ← Cache information;
 EBX ← Cache information;
 ECX ← Cache information;

EDX ← Cache information;
BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← reserved, undefined;
EBX ← reserved, undefined;
ECX ← reserved, undefined;
EDX ← reserved, undefined;

BREAK;
ESAC;

11-79

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
Architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register
can be used to determine if this instruction is supported. If a procedure is able to set or clear this
flag, the CPUID is supported by the processor running the procedure.

11-80

INSTRUCTION SET REFERENCE

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size) by
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively.
The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit posi-
tion in the DX register (see Figure 6-5 on page 6-18). The CDQ instruction copies the sign (bit
31) of the value in the EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from a double-
word before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX ← SignExtend(EAX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

99 CWD DX:AX ← sign-extend of AX

99 CDQ EDX:EAX ← sign-extend of EAX

11-81

INSTRUCTION SET REFERENCE

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

11-82

INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

Operation

IF (((AL AND 0FH) > 9) or AF = 1)
THEN

AL ← AL + 6;
CF ← CF OR CarryFromLastAddition; (* CF OR carry from AL ← AL + 6 *)
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL ← AL + 60H;
CF ← 1;

ELSE
CF ← 0;

FI;

Example
ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=110000

After: AL=AEH BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see “Operation” above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition

11-83

INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed
BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

Operation

IF (AL AND 0FH) > 9 OR AF = 1
THEN

AL ← AL − 6;
CF ← CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL ← AL − 6 *)
AF ← 1;

ELSE AF ← 0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL ← AL − 60H;
CF ← 1;

ELSE CF ← 0;
FI;

Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX

After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see “Operation” above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction

11-84

INSTRUCTION SET REFERENCE

DEC—Decrement by 1

Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source operand can
be a register or a memory location. This instruction allows a loop counter to be updated without
disturbing the CF flag. (Use a SUB instruction with an immediate operand of 1 to perform a
decrement operation that does updates the CF flag.)

Operation

DEST ← DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

11-85

INSTRUCTION SET REFERENCE

DEC—Decrement by 1 (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-86

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source operand
(divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand
can be a general-purpose register or a memory location. The action of this instruction depends
on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

temp ← DX:AX / SRC;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL ← Quotient,
AH ← Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX ← Quotient,
DX ← Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX ← Quotient, EDX ← Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

11-87

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (continued)

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

11-88

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (continued)

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-89

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the
procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. They do not provide a jump or call to another procedure; they merely set up a new
stack frame for an already called procedure. An ENTER instruction is commonly followed by a
CALL, JMP, or Jcc instruction to transfer program control to the procedure being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of 1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with
access points to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” on page 4-15 for more information about the actions of the ENTER instruction.

Operation

NestingLevel ← NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp ← ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 0)

FOR i ← 1 TO (NestingLevel − 1)

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure

11-90

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (continued)

DO
IF OperandSize = 32

THEN
IF StackSize = 32

EBP ← EBP − 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP ← BP − 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP ← EBP − 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP ← BP − 2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP ← FrameTemp
ESP ← EBP − Size;

ELSE (* StackSize = 16*)
BP ← FrameTemp
SP ← BP − Size;

FI;
END;

Flags Affected

None.

11-91

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

11-92

INSTRUCTION SET REFERENCE

F2XM1—Compute 2 x–1

Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:

xy = 2(y ∗ log
2
x)

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) – 1)

ST(0) SRC ST(0) DEST

-1.0 to −0 −0.5 to −0

−0 −0

+0 +0

+0 to +1.0 +0 to 1.0

11-93

INSTRUCTION SET REFERENCE

F2XM1—Compute 2 x–1 (continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-94

INSTRUCTION SET REFERENCE

FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

Note
F Means finite-real number

Operation

ST(0) ← |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞

NaN NaN

11-95

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-real, double-real, word-integer, or short-
integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a real or an
integer value) to the contents of the ST(0) register. The two-operand version, adds the contents
of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be doubled by
coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to extended-real format before
performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

11-96

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (continued)
.

Notes
F Means finite-real number.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN

DEST ← DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST + SRC;
FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+For +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-97

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (continued)

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-98

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into extended-real format and pushes the value onto the FPU
stack. The source operand is loaded without rounding errors. The sign of the source operand is
preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

Operation

TOP ← TOP − 1;
ST(0) ← ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.

11-99

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal (continued)

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-100

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in
the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, according to rounding mode specified by the RC field of the
FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

Notes
F Means finite-real number
D Means packed-BCD number
* Indicates floating-point invalid-operation (#IA) exception
** ±0 or ±1, depending on the rounding mode

If the source value is too large for the destination format and the invalid-operation exception is
not masked, an invalid-operation exception is generated and no value is stored in the destination
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored
in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet NaNs do
not normally cause this exception to be generated.

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

−∞ *

−F < −1 −D

−1 < −F < −0 **

−0 −0

+0 +0

+0 < +F < +1 **

+F > +1 +D

+∞ *

NaN *

11-101

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (continued)

Operation

DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated: 0 =
not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, ±∞, or unsupported format; or
contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to
a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

11-102

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-103

INSTRUCTION SET REFERENCE

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice-versa. The following table shows the results obtained when creating
the absolute value of various classes of numbers.

Notes
F Means finite-real number

Operation

SignBit(ST(0)) ← NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 −0

+F −F

+∞ −∞

NaN NaN

11-104

INSTRUCTION SET REFERENCE

FCHS—Change Sign (continued)

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-105

INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions
before clearing the exception flags; the FNCLEX instruction does not.

Operation

FPUStatusWord[0..7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

11-106

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second operand)
to the destination operand (first operand) if the given test condition is true. The conditions for
each mnemonic are given in the Description column above and in Table 6-4 on page 6-30. The
source operand is always in the ST(i) register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor in the Pentium Pro processor family may not support the FCMOVcc instructions.
Software can check if the FCMOVcc instructions are supported by checking the processor’s
feature information with the CPUID instruction (see “CPUID—CPU Identification” on page
11-73). If both the CMOV and FPU feature bits are set, the FCMOVcc instructions are
supported.

Operation

IF condition TRUE
ST(0) ← ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)

11-107

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move (continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-108

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 = +0.0.

Note
* Flags not set if unmasked invalid-arithmetic-operand (#IA)

exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” on
page 11-192). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

11-109

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (continued)

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#IA) when either or both of the operands is a NaN value or is in an
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

11-110

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-111

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS

Description

Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and CF in the
EFLAGS register according to the results (see the table below). The sign of zero is ignored for
comparisons, so that –0.0 = +0.0.

Note
* Flags not set if unmasked invalid-arithmetic-operand (#IA)

exception is generated.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The FCOMI/FCOMIP
instructions set the status flags to “unordered” and generate an invalid-arithmetic-operand
exception (#IA) when either or both of the operands is a NaN value (SNaN or QNaN) or is in an
unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs. See “FXAM—Examine” on page 11-192 for additional information on unordered
comparisons.

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic-
operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and
pop register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and
set status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set
status flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered* 1 1 1

11-112

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

11-113

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or
have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a QNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-114

INSTRUCTION SET REFERENCE

FCOS—Cosine

Description

Calculates the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the cosine of various classes of numbers, assuming
that neither overflow nor underflow occurs.

Notes
F Means finite-real number
* Indicates floating-point invalid-

arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See “Pi” on page 7-36 for a discussion of the proper value to use for π
in performing such reductions.

Operation

IF |ST(0)| < 263

THEN
C2 ← 0;
ST(0) ← cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

−∞ *

−F −1 to +1

−0 +1

+0 +1

+F −1 to +1

+∞ *

NaN NaN

11-115

INSTRUCTION SET REFERENCE

FCOS—Cosine (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-116

INSTRUCTION SET REFERENCE

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer).
The contents of the FPU data registers and tag register are not affected.

Operation

IF TOP = 0
THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.

11-117

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a real or an integer value). The two-operand
version, divides the contents of the ST(0) register by the contents of the ST(i) register or vice
versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format before
performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)

11-118

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (continued)

Notes
F Means finite-real number.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC = 0
THEN

#Z
ELSE

IF instruction is FIDIV
THEN

DEST ← DEST / ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST / SRC;
FI;

FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ * +0 +0 −0 −0 * NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 +∞ ** * * ** −∞ NaN

+0 −∞ ** * * ** +∞ NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ * −0 −0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-119

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

11-120

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-121

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand
(dividend) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of a memory loca-
tion (either a real or an integer value) by the contents of the ST(0) register. The two-operand
version, divides the contents of the ST(i) register by the contents of the ST(0) register or vice
versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
divide instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format before
performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the
register stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

11-122

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

Notes
F Means finite-real number.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation

IF DEST = 0
THEN

#Z
ELSE

IF instruction is FIDIVR
THEN

DEST ← ConvertExtendedReal(SRC) / DEST;
ELSE (* source operand is real number *)

DEST ← SRC / DEST;
FI;

FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ * +∞ +∞ -• −∞ * NaN

SRC −F +0 +F ** ** -F −0 NaN

−I +0 +F ** ** -F −0 NaN

−0 +0 +0 * * −0 −0 NaN

+0 −0 −0 * * +0 +0 NaN

+I −0 -F ** ** +F +∞ NaN

+F −0 -F ** ** +F +∞ NaN

+∞ * −∞ −∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-123

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

11-124

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-125

INSTRUCTION SET REFERENCE

FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents
of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation

TAG(i) ← 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty

11-126

INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below). The integer
value is converted to extended-real format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” on page 11-192). If either
operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1

11-127

INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-128

INSTRUCTION SET REFERENCE

FILD—Load Integer

Description

Converts the signed-integer source operand into extended-real format and pushes the value onto
the FPU register stack. The source operand can be a word, short, or long integer value. It is
loaded without rounding errors. The sign of the source operand is preserved.

Operation

TOP ← TOP − 1;
ST(0) ← ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.

11-129

INSTRUCTION SET REFERENCE

FILD—Load Integer (continued)

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-130

INSTRUCTION SET REFERENCE

FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). The
contents of the FPU data registers and tag register are not affected. This operation is not equiv-
alent to popping the stack, because the tag for the previous top-of-stack register is not marked
empty.

Operation

IF TOP = 7
THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register

11-131

INSTRUCTION SET REFERENCE

FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers
in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruc-
tion and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked
floating-point exceptions.

11-132

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word- or short-integer format. The
destination operand specifies the address where the first byte of the destination value is to be
stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long-
integer format.

The following table shows the results obtained when storing various classes of numbers in
integer format.

Notes:
F Means finite-real number
I Means integer
* Indicates floating-point invalid-operation

(#IA) exception
** ±0 or ±1, depending on the rounding

mode

If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

−∞ *

−F < −1 −I

−1 < −F < −0 **

−0 0

+0 0

+0 < +F < +1 **

+F > +1 +I

+∞ *

NaN *

11-133

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (continued)

If the value being stored is too large for the destination format, is an ∞, is a NaN, or is in an
unsupported format and if the invalid-arithmetic-operand exception (#IA) is unmasked, an
invalid-operation exception is generated and no value is stored in the destination operand. If the
invalid-operation exception is masked, the integer indefinite value is stored in the destination
operand.

Operation

DEST ← Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

11-134

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-135

INSTRUCTION SET REFERENCE

FLD—Load Real

Description

Pushes the source operand onto the FPU register stack. If the source operand is in single- or
double-real format, it is automatically converted to the extended-real format before being
pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack.
Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN

temp ← ST(i)
TOP ← TOP − 1;
IF SRC is memory-operand

THEN
ST(0) ← ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) ← temp;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source operand
is in extended-real format.

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.

11-136

INSTRUCTION SET REFERENCE

FLD—Load Real (continued)

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-137

INSTRUCTION SET REFERENCE

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU register
stack. The constants that can be loaded with these instructions include +1.0, +0.0, log210, log2e,
π, log102, and loge2. For each constant, an internal 66-bit constant is rounded (as specified by the
RC field in the FPU control word) to external-real format. The inexact-result exception (#P) is
not generated as a result of the rounding.

See “Pi” on page 11-36 for a description of the π constant.

Operation

TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push π onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.

11-138

INSTRUCTION SET REFERENCE

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (continued)

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel287 math coprocessors.

11-139

INSTRUCTION SET REFERENCE

FLDCW—Load Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see “Software Exception Handling” on page 11-41). To
avoid raising exceptions when changing FPU operating modes, clear any pending exceptions
(using the FCLEX or FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord ← SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next waiting floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.

11-140

INSTRUCTION SET REFERENCE

FLDCW—Load Control Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-141

INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment

Description

Loads the complete FPU operating environment from memory into the FPU registers. The
source operand specifies the first byte of the operating-environment data in memory.This data
is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in
memory of the loaded environment, depending on the operating mode of the processor
(protected or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086
mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see “Software Exception Handling” on page 11-41). To
avoid generating exceptions when loading a new environment, clear all the exception flags in
the FPU status word that is being loaded.

Operation

FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next waiting floating-point instruction.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.

11-142

INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-143

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be a register or
a memory location. Source operands in memory can be in single-real, double-real, word-integer,
or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version multiplies the contents of a memory
location (either a real or an integer value) by the contents of the ST(0) register. The two-operand
version, multiplies the contents of the ST(0) register by the contents of the ST(i) register or vice
versa.

The FMULP instructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point multiply instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format before
performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)

11-144

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (continued)

Notes:
F Means finite-real number
I Means Integer
* Indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL
THEN

DEST ← DEST ∗ ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST ∗ SRC;
FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ +∞ +∞ * * −∞ −∞ NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ −∞ −∞ * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-145

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (continued)

#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-146

INSTRUCTION SET REFERENCE

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does
not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 D0 FNOP No operation is performed.

11-147

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source operand
in register ST(0), stores the result in ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than +π.

The following table shows the results obtained when computing the arctangent of various
classes of numbers, assuming that underflow does not occur.

Note
F Means finite-real number

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the
register stack

ST(0)

−∞ −F −0 +0 +F +∞ NaN

−∞ −3π/4 −π/2 −π/2 −π/2 −π/2 −π/4 NaN

ST(1) −F −π −π to −π/2 −π/2 −π/2 −π/2 to −0 -0 NaN

−0 −π −π −π −0 −0 −0 NaN

+0 +π +π +π +0 +0 +0 NaN

+F +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4 +π/2 +π/2 +π/2 +π/2 +π/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-148

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

11-149

INSTRUCTION SET REFERENCE

FPREM—Partial Remainder

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the dividend) by
the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder = ST(0) − (N ∗ ST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of [ST(0) /
ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend. The
magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

Notes
F Means finite-real number
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing
ST(0) by ST(1)

ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-150

INSTRUCTION SET REFERENCE

FPREM—Partial Remainder (continued)

The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remainder through iterative subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called the partial remainder. The exponent of the partial remainder will be less than
the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation

D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

11-151

INSTRUCTION SET REFERENCE

FPREM—Partial Remainder (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsup-
ported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-152

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the divi-
dend) by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0).
The remainder represents the following value:

Remainder = ST(0) − (N ∗ ST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of [ST(0) /
ST(1)] toward the nearest integer value. The sign of the remainder is the same as the sign of the
dividend. The magnitude of the remainder is less than half the magnitude of the modulus, unless
a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

Notes
F Means finite-real number
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This instruction
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(0)
divided by ST(1) to an integer (see the “Operation” below).

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on
dividing ST(0) by ST(1)

ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-153

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative subtrac-
tion, but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruc-
tion. If the instruction succeeds in producing a remainder that is less than one half the modulus,
the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is
set, and the result in ST(0) is called the partial remainder. The exponent of the partial remainder
will be less than the exponent of the original dividend by at least 32. Software can re-execute
the instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note
that while executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation

D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

11-154

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞,
or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-155

INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must
be less than ±263. The following table shows the unmasked results obtained when computing the
partial tangent of various classes of numbers, assuming that underflow does not occur.

Notes
F Means finite-real number
* Indicates floating-point invalid-

arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See “Pi” on page 11-36 for a discussion of the proper value to use for
π in performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1
onto the FPU stack.

ST(0) SRC ST(0) DEST

−∞ *

−F −F to +F

−0 −0

+0 +0

+F −F to +F

+∞ *

NaN NaN

11-156

INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent (continued)

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-157

INSTRUCTION SET REFERENCE

FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending on the
current rounding mode (setting of the RC field of the FPU control word), and stores the result
in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation

ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.

11-158

INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by
a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in
memory of the stored environment, depending on the operating mode of the processor (protected
or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating environ-
ment, clear all the exception flags in the FPU status word that is being loaded.

Operation

FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);
ST(0) ← SRC(ST(0));
ST(1) ← SRC(ST(1));
ST(2) ← SRC(ST(2));
ST(3) ← SRC(ST(3));
ST(4) ← SRC(ST(4));
ST(5) ← SRC(ST(5));
ST(6) ← SRC(ST(6));
ST(7) ← SRC(ST(7));

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.

11-159

INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State (continued)

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-160

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified destina-
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles
pending unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruc-
tion does not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in
memory of the stored environment, depending on the operating mode of the processor (protected
or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” on page
11-131).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;
DEST(ST(0)) ← ST(0);
DEST(ST(1)) ← ST(1);
DEST(ST(2)) ← ST(2);
DEST(ST(3)) ← ST(3);

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for
pending unmasked floating-point exceptions. Then re-initialize
the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU.

11-161

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (continued)
DEST(ST(4)) ← ST(4);
DEST(ST(5)) ← ST(5);
DEST(ST(6)) ← ST(6);
DEST(ST(7)) ← ST(7);
(* Initialize FPU *)
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

11-162

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc-
tion should be executed before attempting to read from the memory image stored with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

11-163

INSTRUCTION SET REFERENCE

FSCALE—Scale

Description

Multiplies the destination operand by 2 to the power of the source operand and stores the result
in the destination operand. This instruction provides rapid multiplication or division by integral
powers of 2. The destination operand is a real value that is located in register ST(0). The source
operand is the nearest integer value that is smaller than the value in the ST(1) register (that is,
the value in register ST(1) is truncate toward 0 to its nearest integer value to form the source
operand). The actual scaling operation is performed by adding the source operand (integer
value) to the exponent of the value in register ST(0). The following table shows the results
obtained when scaling various classes of numbers, assuming that neither overflow nor under-
flow occurs.

Notes
F Means finite-real number
N Means integer.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;

FSCALE;

FSTP ST(1);

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

ST(1)

−N 0 +N

−∞ −∞ −∞ −∞

ST(0) −F −F −F −F

−0 −0 −0 −0

+0 +0 +0 +0

+F +F +F +F

+∞ +∞ +∞ +∞

NaN NaN NaN NaN

11-164

INSTRUCTION SET REFERENCE

FSCALE—Scale (continued)

In this example, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signifi-
cand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT
operation was performed. The FSTP ST(1) instruction returns the recreated value to the FPU
register where it originally resided.

Operation

ST(0) ← ST(0) ∗ 2ST(1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-165

INSTRUCTION SET REFERENCE

FSIN—Sine

Description

Calculates the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine of various classes of numbers,
assuming that underflow does not occur.

Notes:
F Means finite-real number
* Indicates floating-point invalid-

arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See “Pi” on page 11-36 for a discussion of the proper value to use for
π in performing such reductions.

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* source operand out of range *)
C2 ← 1;

FI:

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

−∞ *

−F −1 to +1

−0 −0

+0 +0

+F −1 to +1

+∞ *

NaN NaN

11-166

INSTRUCTION SET REFERENCE

FSIN—Sine (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-167

INSTRUCTION SET REFERENCE

FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster
than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

Notes
F Means finite-real number
* Indicates floating-point invalid-arithmetic-operand

(#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See “Pi” on page 11-36 for a discussion of the proper value to use for
π in performing such reductions.

Operation

IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with
the sine, and push the cosine onto the register stack.

SRC DEST

ST(0)) ST(0) Cosine ST(1) Sine

−∞ * *

−F −1 to +1 −1 to +1

−0 +1 −0

+0 +1 +0

+F −1 to +1 −1 to +1

+∞ * *

NaN NaN NaN

11-168

INSTRUCTION SET REFERENCE

FSINCOS—Sine and Cosine (continued)

TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-169

INSTRUCTION SET REFERENCE

FSQRT—Square Root

Description

Calculates the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

Notes
F Means finite-real number
* Indicates floating-point invalid-arithmetic-

operand (#IA) exception.

Operation

ST(0) ← SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated:
0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in
ST(0)

SRC (ST(0)) DEST (ST(0))

−∞ *

−F *

−0 −0

+0 +0

+F +F

+∞ +∞

NaN NaN

11-170

INSTRUCTION SET REFERENCE

FSQRT—Square Root (continued)

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-171

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real

Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU registers stack. When storing the value in
memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also stores values in memory
in extended-real format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single- or double-real, the significand of the value being stored is
rounded to the width of the destination (according to rounding mode specified by the RC field
of the FPU control word), and the exponent is converted to the width and bias of the destination
format. If the value being stored is too large for the destination format, a numeric overflow
exception (#O) is generated and, if the exception is unmasked, no value is stored in the destina-
tion operand. If the value being stored is a denormal value, the denormal exception (#D) is not
generated. This condition is simply signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

Operation

DEST ← ST(0);
IF instruction = FSTP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack

11-172

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P)
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

11-173

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-174

INSTRUCTION SET REFERENCE

FSTCW/FNSTCW—Store Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory. The
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before
storing the control word; the FNSTCW instruction does not.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for
pending unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for
pending unmasked floating-point exceptions.

11-175

INSTRUCTION SET REFERENCE

FSTCW/FNSTCW—Store Control Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-176

INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the desti-
nation operand, and then masks all floating-point exceptions. The FPU operating environment
consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and
last opcode. Figures 7-13 through 7-14 show the layout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the size of the current
address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENV instruction does not.The saved image
reflects the state of the FPU after all floating-point instructions preceding the
FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the procedure stack.
Masking all exceptions after saving the environment prevents floating-point exceptions from
interrupting the exception handler.

Operation

DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

11-177

INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment (continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-178

INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word

Description

Stores the current value of the FPU status word in the destination location. The destination
operand can be either a two-byte memory location or the AX register. The FSTSW instruction
checks for and handles pending unmasked floating-point exceptions before storing the status
word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. (See
“Branching and Conditional Moves on FPU Condition Codes” on page 11-13.) This instruction
can also be used to invoke exception handlers (by examining the exception flags) in environ-
ments that do not use interrupts. When the FNSTSW AX instruction is executed, the AX register
is updated before the processor executes any further instructions. The status stored in the AX
register is thus guaranteed to be from the completion of the prior FPU instruction.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for
pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for
pending unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for
pending unmasked floating-point exceptions.

DF E0 FNSTSW AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

11-179

INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-180

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in the desti-
nation location. The destination operand is always an FPU data register; the source operand can
be a register or a memory location. Source operands in memory can be in single-real, double-
real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
a memory location (either a real or an integer value) from the contents of the ST(0) register and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(0) register
from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point subtract instructions always results in the register stack being popped. In some assemblers,
the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the SRC value is
subtracted from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop
register stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

11-181

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (continued)

Notes
F Means finite-real number
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB
THEN

DEST ← DEST − ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST − SRC;
FI;
IF instruction = FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * −∞ −∞ −∞ −∞ −∞ NaN

−F +∞ ±F or ±0 DEST DEST −F −∞ NaN

DEST −0 +∞ −SRC ±0 −0 −SRC −∞ NaN

+0 +∞ −SRC +0 ±0 −SRC −∞ NaN

+F +∞ +F DEST DEST ±F or ±0 −∞ NaN

+∞ +∞ +∞ +∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-182

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (continued)

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-183

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in the desti-
nation location. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-real, double-real,
word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of a memory location (either a real or an integer value) and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(i) register
from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point reverse subtract instructions always results in the register stack being popped. In some
assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop
register stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

11-184

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (continued)

Notes
F Means finite-real number
I Means integer
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN

DEST ← ConvertExtendedReal(SRC) − DEST;
ELSE (* source operand is real number *)

DEST ← SRC − DEST;
FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

SRC

−∞ −F −0 +0 +F +∞ NaN

−∞ * +∞ +∞ +∞ +∞ +∞ NaN

DEST −F or −I −∞ ±F or ±0 −DEST −DEST +F +∞ NaN

−0 −∞ SRC ±0 +0 SRC +∞ NaN

+0 −∞ SRC −0 ±0 SRC +∞ NaN

+F or +I −∞ −F −DEST −DEST ±F or ±0 +∞ NaN

+∞ −∞ −∞ −∞ −∞ −∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-185

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (continued)

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-186

INSTRUCTION SET REFERENCE

FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and
C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” on page 11-192). If the value
in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unor-
dered.”)

The sign of zero is ignored, so that –0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0) 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1

11-187

INSTRUCTION SET REFERENCE

FTST—TEST (continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-188

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition
code flags C0, C2, and C3 in the FPU status word according to the results (see the table below).
If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of
zero is ignored, so that –0.0 = +0.0.

Note
* Flags not set if unmasked invalid-arithmetic-operand (#IA)

exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” on page 11-192). The FUCOM instructions perform the same operation as
the FCOM instructions. The only difference is that the FUCOM instruction raises the invalid-
arithmetic-operand exception (#IA) only when either or both operands is an SNaN or is in an
unsupported format; QNaNs cause the condition code flags to be set to unordered, but do not
cause an exception to be generated. The FCOM instruction raises an invalid-operation exception
when either or both of the operands is a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand excep-
tion being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and the
FUCOMPP instructions pops the register stack twice following the comparison operation. To
pop the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

11-189

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN
C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats.
Detection of a QNaN value in and of itself does not raise an invalid-
operand exception.

#D One or both operands are denormal values.

11-190

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-191

INSTRUCTION SET REFERENCE

FWAIT—Wait

See entry for WAIT.

11-192

INSTRUCTION SET REFERENCE

FXAM—Examine

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in
the FPU status word to indicate the class of value or number in the register (see the table below).
.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty
or full.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-Point Exceptions

None.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0

11-193

INSTRUCTION SET REFERENCE

FXAM—Examine (continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-194

INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the
contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:

FXCH ST(3);

FSQRT;

FXCH ST(3);

Operation

IF number-of-operands is 1
THEN

temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)

11-195

INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents (continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-196

INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation,
the new top-of-stack register ST(0) contains the value of the original significand expressed as a
real number. The sign and significand of this value are the same as those found in the source
operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1)
register contains the value of the original operand’s true (unbiased) exponent expressed as a real
number. (The operation performed by this instruction is a superset of the IEEE-recommended
logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in extended-real
format to decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is
stored in register ST(0).

Operation

TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is ±0.

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand,
store exponent in ST(0), and push the significand onto the
register stack.

11-197

INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand (continued)

#D Source operand is a denormal value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-198

INSTRUCTION SET REFERENCE

FYL2X—Compute y × log 2x

Description

Calculates (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

Notes
F Means finite-real number
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns
∞ with a sign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):

logbx = (log2b)–1 ∗ log2x

Operation

ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the
register stack

ST(0)

−∞ −F +0 +0 +F +∞ NaN

−∞ * * +∞ +∞ +∞ −∞ NaN

ST(1) −F * * ** ** ±F −∞ NaN

−0 * * * * +0 * NaN

+0 * * * * +0 * NaN

+F * * ** ** ±F +∞ NaN

+∞ * * −∞ −∞ −∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

11-199

INSTRUCTION SET REFERENCE

FYL2X—Compute y × log 2x (continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-200

INSTRUCTION SET REFERENCE

FYL2XP1—Compute y ∗ log 2(x +1)

Description

Calculates the log epsilon (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and
pops the FPU register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If either of the source operands is outside
its acceptable range, the result is undefined and no exception is generated.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

Notes:
F Means finite-real number
* Indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. When the epsilon value (ε) is small, more significant digits can be retained by
using the FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction.
The (ε+1) expression is commonly found in compound interest and annuity calculations. The
result can be simply converted into a value in another logarithm base by including a scale factor
in the ST(1) source operand. The following equation is used to calculate the scale factor for a
particular logarithm base, where n is the logarithm base desired for the result of the FYL2XP1
instruction:

scale factor = logn 2

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the
register stack

ST(0)

−∞ −(1 − ()) to −0 −0 +0 +0 to +(1 − ()) +∞ NaN

−∞ * +∞ * * −∞ −∞ NaN

ST(1) −F * +F +0 −0 −F −∞ NaN

−0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+F * −F −0 +0 +F +∞ NaN

+∞ * −∞ * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1 2 2⁄–()) to 1 2 2⁄–()–

2 2⁄ 2 2⁄

11-201

INSTRUCTION SET REFERENCE

FYL2XP1—Compute y ∗ log 2(x +1) (continued)

Operation

ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

11-202

INSTRUCTION SET REFERENCE

HLT—Halt

Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt,
NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual 8086 mode, the privilege level of a program or procedure must to 0 to execute the HLT
instruction.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

F4 HLT Halt

11-203

INSTRUCTION SET REFERENCE

IDIV—Signed Divide

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and stores the
result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a general-purpose
register or a memory location. The action of this instruction depends on the operand size, as
shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is always the
same as the sign of the dividend. The absolute value of the remainder is always less than the
absolute value of the divisor. Overflow is indicated with the #DE (divide error) exception rather
than with the OF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-
extension of AL) by r/m byte. (Results: AL=Quotient,
AH=Remainder)

F7 /7 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-
extension of AX) by r/m word. (Results: AX=Quotient,
DX=Remainder)

F7 /7 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Operand Size Dividend Divisor Quotient Remainder
Quotient
Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to
+32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to
232 − 1

11-204

INSTRUCTION SET REFERENCE

IDIV—Signed Divide (continued)
FI;

ELSE
IF OpernadSize = 16 (* doubleword/word operation *)

THEN
temp ← DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

11-205

INSTRUCTION SET REFERENCE

IDIV—Signed Divide (continued)

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-206

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX← AL ∗ r/m byte

F7 /5 IMUL r/m16 DX:AX ← AX ∗ r/m word

F7 /5 IMUL r/m32 EDX:EAX ← EAX ∗ r/m doubleword

0F AF /r IMUL r16,r/m16 word register ← word register ∗ r/m word

0F AF /r IMUL r32,r/m32 doubleword register ← doubleword register ∗ r/m
doubleword

6B /r ib IMUL r16,r/m16,imm8 word register ← r/m16 ∗ sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register ← r/m32 ∗ sign-extended immediate
byte

6B /r ib IMUL r16,imm8 word register ← word register ∗ sign-extended immediate
byte

6B /r ib IMUL r32,imm8 doubleword register ← doubleword register ∗ sign-
extended immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register ← r/m16 ∗ immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register ← r/m32 ∗ immediate doubleword

69 /r iw IMUL r16,imm16 word register ← r/m16 ∗ immediate word

69 /r id IMUL r32,imm32 doubleword register ← r/m32 ∗ immediate doubleword

11-207

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (continued)

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX ← AL ∗ SRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE IF OperandSize = 16

THEN
DX:AX ← AX ∗ SRC (* signed multiplication *)
IF ((DX = 0000H) OR (DX = FFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX ← EAX ∗ SRC (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* signed multiplication; temp is double DEST size*)
DEST ← DEST ∗ SRC (* signed multiplication *)
IF temp ≠ DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;

ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* signed multiplication *)

11-208

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (continued)
temp ← SRC1 ∗ SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;
FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-209

INSTRUCTION SET REFERENCE

IN—Input from Port

Description

Copies the value from the I/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can be register AL, AX, or EAX, depending on the size of the
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand
allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O
port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* Real-address mode or protected mode with CPL ≤ IOPL *)
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)

DEST ← SRC; (* Reads from I/O port *)
FI;

Flags Affected

None.

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX

EC IN AL,DX Input byte from I/O port in DX into AL

ED IN AX,DX Input word from I/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX

11-210

INSTRUCTION SET REFERENCE

IN—Input from Port (continued)

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

11-211

INSTRUCTION SET REFERENCE

INC—Increment by 1

Description

Adds 1 to the operand, while preserving the state of the CF flag. The source operand can be a
register or a memory location. This instruction allows a loop counter to be updated without
disturbing the CF flag. (Use a ADD instruction with an immediate operand of 1 to perform a
increment operation that does updates the CF flag.)

Operation

DEST ← DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1

11-212

INSTRUCTION SET REFERENCE

INC—Increment by 1 (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-213

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String

Description

Copies the data from the I/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand must be the DX register, allowing I/O
port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit I/O port, the opcode
determines the port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute
determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the operand-size
attribute is 16, the DI register is used as the destination-index register.) The ES segment cannot
be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and doubleword
versions of the INS instructions. (For the INS instruction, “ES:EDI” must be explicitly specified
in the instruction.)

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the
EDI register is incremented or decremented automatically according to the setting of the DF flag
in the EFLAGS register. (If the DF flag is 0, the EDI register is incremented; if the DF flag is 1,
the EDI register is decremented.) The EDI register is incremented or decremented by 1 for byte
operations, by 2 for word operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input
of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat
Following String Operation” on page 11-333 for a description of the REP prefix.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Reads from I/O port *)

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI

6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI

11-214

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (continued)
IF (byte transfer)

THEN IF DF = 0
THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN DI ← 2;
ELSE DI ← –2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-215

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (continued)

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-216

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure

Description

The INTn instruction generates a call to the interrupt or exception handler specified with the
destination operand (see “Interrupts and Exceptions” on page 11-9). The destination operand
specifies an interrupt vector from 0 to 255, encoded as an 8-bit unsigned intermediate value. The
first 32 interrupt vectors are reserved by Intel for system use. Some of these interrupts are used
for internally generated exceptions.

The INTn instruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the EFLAGS register and
calls the overflow interrupt handler if the OF flag is set to 1.

The INT3 instruction is a special mnemonic for calling the debug exception handler. The action
of the INT3 instruction (opcode CC) is slightly different from the operation of the INT 3 instruc-
tion (opcode CC03), as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at
any IOPL level.

The action of the INTn instruction (including the INTO and INT3 instructions) is similar to that
of a far call made with the CALL instruction. The primary difference is that with the INTn
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS
information and return address from the stack.

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that
is, it provides index into the IDT. The selected interrupt descriptor in turn contains a pointer to
an interrupt or exception handler procedure. In protected mode, the IDT contains an array of 8-
byte descriptors, each of which points to an interrupt gate, trap gate, or task gate. In real-address
mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and a 2-byte
instruction pointer), each of which point directly to procedure in the selected segment.

Opcode Instruction Description

CC INT3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector numbered by immediate byte

CE INTO Interrupt 4—if overflow flag is 1

11-217

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction (except #GP).

Notes
− Don't Care
Y Yes, Action Taken
Blank Action Not Taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INTn instruction. If the IOPL is less than 3, the processor generates a general protection excep-
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level
0. The interrupt gate's DPL must be set to three and the target CPL of the interrupt handler proce-
dure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0.

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL &
NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-
MODE

Y

TASK-GATE Y

#GP Y Y Y

11-218

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

Operation

The following operational description applies not only to the INTn and INTO instructions, but
also to external interrupts and exceptions.

IF PE=0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 *)

IF (VM=1 AND IOPL < 3 AND INTn)
THEN

#GP(0);
ELSE (* protected mode or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
FI;

FI;

REAL-ADDRESS-MODE:
IF ((DEST ∗ 4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS ← IDT(Descriptor (vector ∗ 4), selector));
EIP ← IDT(Descriptor (vector ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST ∗ 8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST ∗ 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INTn, INT3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector number ∗ 8) + 2);
(* PE=1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector number ∗ 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

11-219

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of two bytes

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;

11-220

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
IF code segment is non-conforming AND DPL < CPL

THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)

ELSE (* VM=1 *)
IF code segment DPL ≠ 0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *)

FI;
ELSE (* PE=1, interrupt or trap gate, DPL ≥ CPL *)

IF VM=1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;
FI;

END;

INTER-PREVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;

11-221

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL ≠ DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ← TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL ← CodeSegmentDescriptor(DPL);
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0 (* interrupt flag to 0 (disabled) *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

11-222

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
IF service through interrupt gate THEN IF ← 0; FI;

11-223

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
TempSS ← SS;
TempESP ← ESP;
SS:ESP ← TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (*segment registers nullified, invalid in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS);
IF OperandSize=32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

11-224

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
ELSE (* 16-bit gate *)

Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL) ← CPL;
IF interrupt gate

THEN
IF ← 0; FI;
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

FI;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction is
executed (see “Operation” section.)

Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

11-225

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment
selector in the TSS is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the interrupt vector is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment when a stack switch occurs.

Virtual 8086 Mode Exceptions

#GP(0) (For INTn instruction) If the IOPL is less than 3 and the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

11-226

INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

11-227

INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back
to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also implementation-dependent; its function may be implemented differently on future Intel
Architecture processors.

Use this instruction with care. Data cached internally and not written back to main memory will
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

Opcode Instruction Description

0F 08 INVD Flush internal caches; initiate flushing of external caches.

11-228

INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches (continued)

Intel Architecture Compatibility

This instruction is not supported on Intel Architecture processors earlier than the Intel486
processor.

11-229

INSTRUCTION SET REFERENCE

INVLPG—Invalidate TLB Entry

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand is a memory address. The processor determines the page that
contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also implementation-dependent; its function may be implemented differently on future Intel
Architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” on page
11-285 for further information on operations that flush the TLB.

Operation

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual 8086 mode.

Intel Architecture Compatibility

This instruction is not supported on Intel Architecture processors earlier than the Intel486
processor.

Opcode Instruction Description

0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m

11-230

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return

Description

Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt or, a software-generated interrupt, or
returns from a nested task. IRET and IRETD are mnemonics for the same opcode. The IRETD
mnemonic (interrupt return double) is intended for use when returning from an interrupt when
using the 32-bit operand size; however, most assemblers use the IRET mnemonic interchange-
ably for both operand sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution
of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execu-
tion. If the return is to virtual-8086 mode, the processor also pops the data segment registers
from the stack.

If the NT flag is set, the IRET instruction performs a return from a nested task (switches from
the called task back to the calling task) or reverses the operation of an interrupt or exception that
caused a task switch. The updated state of the task executing the IRET instruction is saved in its
TSS. If the task is reentered later, the code that follows the IRET instruction is executed.

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)

11-231

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE:;
ELSE

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

11-232

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0);
FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS ← Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE

#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits

11-233

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

THEN #SS(0);
FI;
IF instruction pointer not within code segment limits

THEN #GP(0);
FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* pop 2 words; throw away high-order word *)
DS ← Pop(); (* pop 2 words; throw away high-order word *)
FS ← Pop(); (* pop 2 words; throw away high-order word *)
GS ← Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
(* Resume execution in Virtual 8086 mode *)

END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

11-234

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPL ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32

THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); FI;

ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector

IF stack segment selector RPL ≠ RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;

11-235

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

OR stack segment DPL ≠ RPL of the return code segment selector
THEN #GP(SS selector);

FI;
IF stack segment is not present THEN #NP(SS selector); FI;

IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPO ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ← 0; (* null segment selector *)

FI;
OD;

END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

11-236

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.

11-237

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=OF)

7C cb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 Jump short if not carry (CF=0)

75 cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF)

7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75 cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

11-238

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (continued)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of –128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction pointer size
of 16 bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the above table.
The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Opcode Instruction Description

0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

11-239

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (continued)

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;

JMP FARLABEL;

BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. These instructions are useful at the beginning of a conditional loop that terminates with a
conditional loop instruction (such as LOOPNE). They prevent entering the loop when the ECX
or CX register is equal to 0, which would cause the loop to execute 232

 or 64K times, respec-
tively, instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation

IF condition
THEN

 EIP ← EIP + SignExtend(DEST);
IF OperandSize = 16

THEN
EIP ← EIP AND 0000FFFFH;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

11-240

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

11-241

INSTRUCTION SET REFERENCE

JMP—Jump

Description

Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

• Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far jump—A jump to an instruction located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Task switch—A jump to an instruction located in a different task. (This is a form of a far
jump.)

A task switch can only be executed in protected mode (see Chapter 6 in the Pentium Pro Family
Developer’s Manual, Volume 3 for information on task switching with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current code
segment) that is specified with the target operand. The target operand specifies either an absolute
address (that is an offset from the base of the code segment) or a relative offset (a signed offset
relative to the current value of the instruction pointer in the EIP register). An absolute address
is specified directly in a register or indirectly in a memory location (r/m16 or r/m32 operand
form). A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code,
but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which
is added to the value in the EIP register (that is, to the instruction following the JMP instruction).
The operand-size attribute determines the size of the target operand (16 or 32 bits) for absolute
addresses. Absolute addresses are loaded directly into the EIP register. When a relative offset is
specified, it is added to the value of the EIP register. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction pointer size
of 16 bits. The CS register is not changed on near jumps.

Opcode Instruction Description

EB cb JMP rel8 Jump near, relative address

E9 cw JMP rel16 Jump near, relative address

E9 cd JMP rel32 Jump near, relative address

FF /4 JMP r/m16 Jump near, indirect address

FF /4 JMP r/m32 Jump near, indirect address

EA cd JMP ptr16:16 Jump far, absolute address

EA cp JMP ptr16:32 Jump far, absolute address

FF /5 JMP m16:16 Jump far, indirect address

FF /5 JMP m16:32 Jump far, indirect address

11-242

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

When executing a far jump, the processor jumps to the code segment and address specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruction
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

When the processor is operating in protected mode, a far jump can also be used to access a code
segment through a call gate or to switch tasks. Here, the processor uses the segment selector part
of the far address to access the segment descriptor for the segment being jumped to. Depending
on the value of the type and access rights information in the segment selector, the JMP instructon
can perform:

• A far jump to a conforming or non-conforming code segment (same mechanism as the far
jump described in the previous paragraph, except that the processor checks the access
rights of the code segment being jumped to).

• An far jump through a call gate.

• A task switch.

The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate and instruction either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is similar to executing a jump through a call
gate. Here the target operand specifies the segment selector of the task gate for the task being
switched to. (The offset part of the target operand is ignored). The task gate in turn points to the
TSS for the task, which contains the segment selectors for the task’s code, data, and stack
segments and the instruction pointer to the target instruction. One form of the JMP instruction
allows the jump to be made directly to a TSS, without going through a task gate. See Chapter 13
in Pentium Pro Family Developer’s Manual, Volume 3 the for detailed information on the
mechanics of a task switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump address
or cacheability.

11-243

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

Operation

IF near jump
THEN IF near relative jump

THEN
tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)

ELSE (* near absolute jump *)
tempEIP ← DEST;

FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← tempEIP;

ELSE (* OperandSize=16 *)
EIP ← tempEIP AND 0000FFFFH;

FI;
FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN

tempEIP ← DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;

11-244

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP ← DEST(offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(code segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP ← DEST(offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

CALL-GATE:
IF call gate DPL < CPL

OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;

IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

11-245

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP ← DEST(offset);
IF GateSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

TASK-GATE:
IF task gate DPL < CPL

OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

11-246

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment
limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment selector
is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

11-247

INSTRUCTION SET REFERENCE

JMP—Jump (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made. (Only occurs when fetching target from memory.)

11-248

INSTRUCTION SET REFERENCE

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and
CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH
register as shown in the “Operation” below.

Operation

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)

11-249

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS
register. The source operand (which can be a register or a memory location) contains the
segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can preform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor comprise the type
and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second
doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is masked by
00FXFF00H before it is loaded into the destination operand. When the operand size is 16 bits,
the access rights comprise the type and DPL fields. Here, the two lower-order bytes of the
doubleword are masked by FF00H before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rights in the destination
register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LAR instruction. The valid system
segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are
less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16 ← r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32 ← r/m32 masked by 00FxFF00H

11-250

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte (continued)

Operation
IF SRC(Offset) > descriptor table limit THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
IF OperandSize = 32

THEN
DEST ← [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST ← [SRC] AND FF00H;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

11-251

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real Address Mode Exceptions

#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual 8086 mode.

11-252

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Load a far pointer (segment selector and offset) from the second operand (source operand) into
a segment register and the first operand (destination operand). The source operand specifies a
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand
specify a segment register/general-purpose register pair. The 16-bit segment selector from the
source operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand.

If one of these instructions is executed in protected mode, additional information from the
segment descriptor pointed to by the segment selector in the source operand is loaded in the
hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into DS, ES,
FS, or GS registers without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a null selector, causes a general-
protection exception (#GP) and no memory reference to the segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded

THEN IF SegementSelector = null
THEN #GP(0);

FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL ≠ CPL
OR Access rights indicate nonwritable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
ELSE IF Segment marked not present

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

11-253

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer (continued)
THEN #SS(selector);

FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister ← NullSelector;
SegmentRegister(DescriptorValidBit) ← 0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS ← SegmentSelector(SRC);

FI;
DEST ← Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
segment selector RPL is not equal to CPL, the segment is a nonwritable
data segment, or DPL is not equal to CPL.

11-254

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer (continued)

If the DS, ES, FS, or GS register is being loaded with a non-null segment
selector and any of the following is true: the segment selector index is not
within descriptor table limits, the segment is neither a data nor a readable
code segment, or the segment is a data or nonconforming-code segment
and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-255

INSTRUCTION SET REFERENCE

LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores it in the
first operand (destination operand). The source operand is a memory address (offset part) spec-
ified with one of the processors addressing modes; the destination operand is a general-purpose
register. The address-size and operand-size attributes affect the action performed by this instruc-
tion, as shown in the following table. The operand-size attribute of the instruction is determined
by the chosen register; the address-size attribute is determined by the attribute of the code
segment.

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN

DEST ← EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32

THEN
temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

11-256

INSTRUCTION SET REFERENCE

LEA—Load Effective Address (continued)
ELSE IF OperandSize = 32 AND AddressSize = 32

THEN
DEST ← EffectiveAddress(SRC); (* 32-bit address *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

11-257

INSTRUCTION SET REFERENCE

LEAVE—High Level Procedure Exit

Description

Executes a return from a procedure or group of nested procedures established by an earlier
ENTER instruction. The instruction copies the frame pointer (in the EBP register) into the stack
pointer register (ESP), releasing the stack space used by a procedure for its local variables. The
old frame pointer (the frame pointer for the calling procedure that issued the ENTER instruc-
tion) is then popped from the stack into the EBP register, restoring the calling procedure’s frame.

A RET instruction is commonly executed following a LEAVE instruction to return program
control to the calling procedure and remove any arguments pushed onto the stack by the proce-
dure being returned from.

See “Procedure Calls for Block-Structured Languages” on page 11-15 for detailed information
on the use of the ENTER and LEAVE instructions.

Operation

IF StackAddressSize = 32
THEN

ESP ← EBP;
ELSE (* StackAddressSize = 16*)

SP ← BP;
FI;
IF OperandSize = 32

THEN
EBP ← Pop();

ELSE (* OperandSize = 16*)
BP ← Pop();

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of the
current stack segment.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP

11-258

INSTRUCTION SET REFERENCE

LEAVE—High Level Procedure Exit (continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective address
space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective address
space from 0 to 0FFFFH.

11-259

INSTRUCTION SET REFERENCE

LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

11-260

INSTRUCTION SET REFERENCE

LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

11-261

INSTRUCTION SET REFERENCE

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description

Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt descriptor table register (IDTR). The source operand is a pointer to 6 bytes of data in
memory that contains the base address (a linear address) and the limit (size of table in bytes) of
the global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size
attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base
address (upper 4 bytes of the data operand) are loaded into the register. If the operand-size
attribute is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth
byte) are loaded. Here, the high-order byte of the operand is not used and the high-order byte of
the base address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used
in application programs. They are the only instructions that directly load a linear address (that
is, not a segment-relative address) and a limit in protected mode. They are commonly executed
in real-address mode to allow processor initialization prior to switching to protected mode.

See “SGDT/SIDT—Store Global/Interrupt Descriptor Table Register” on page 11-356 for infor-
mation on storing the contents of the GDTR and IDTR.

Operation

IF instruction is LIDT
THEN

IF OperandSize = 16
THEN

IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI;
FI;

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR

11-262

INSTRUCTION SET REFERENCE

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
(continued)

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-263

INSTRUCTION SET REFERENCE

LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

11-264

INSTRUCTION SET REFERENCE

LLDT—Load Local Descriptor Table Register

Description

Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a
segment selector that points to a local descriptor table (LDT). After the segment selector is
loaded in the LDTR, the processor uses to segment selector to locate the segment descriptor for
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS,
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment
(TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the
LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection excep-
tion (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR

11-265

INSTRUCTION SET REFERENCE

LLDT—Load Local Descriptor Table Register (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual 8086 mode.

11-266

INSTRUCTION SET REFERENCE

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt Descriptor
Table Register.

11-267

INSTRUCTION SET REFERENCE

LMSW—Load Machine Status Word

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The
source operand can be a 16-bit general-purpose register or a memory location. Only the low-
order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded
into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-
size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to
switch to protected mode. The PE flag in the CR0 register is a sticky bit. Once set to 1, the
LMSW instruction cannot be used clear this flag and force a switch back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used
in application programs. In protected or virtual 8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and proce-
dures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should use
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation

CR0[0:3] ← SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0

11-268

INSTRUCTION SET REFERENCE

LMSW—Load Machine Status Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-269

INSTRUCTION SET REFERENCE

LOCK—Assert LOCK# Signal Prefix

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCK# signal insures that the processor has exclusive use of any shared memory while the
signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms of the
instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG,
DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined opcode
exception will be generated if the LOCK prefix is used with any other instruction. The XCHG
instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK
prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory
locking is observed for arbitrarily misaligned fields.

Operation

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying
instruction

11-270

INSTRUCTION SET REFERENCE

LOCK—Assert LOCK# Signal Prefix (continued)

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

11-271

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String Operand

Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location at the address DS:ESI. (When the
operand-size attribute is 16, the SI register is used as the source-index register.) The DS segment
may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and double-
word versions of the LODS instructions. (For the LODS instruction, “DS:ESI” must be explic-
itly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL, AX, or
EAX register, the ESI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The ESI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword opera-
tions.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct, because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on page 11-333 for
a description of the REP prefix.

Operation

IF (byte load)
THEN

AL ← SRC; (* byte load *)
THEN IF DF = 0

THEN (E)SI ← 1;
ELSE (E)SI ← –1;

FI;
ELSE IF (word load)

THEN
AX ← SRC; (* word load *)

THEN IF DF = 0

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DS:SI Load word at address DS:SI into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:SI into AX

AD LODSD Load doubleword at address DS:ESI into EAX

11-272

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String Operand (continued)
THEN SI ← 2;
ELSE SI ← –2;

FI;
ELSE (* doubleword transfer *)

EAX ← SRC; (* doubleword load *)
THEN IF DF = 0

THEN ESI ← 4;
ELSE ESI ← –4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-273

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump address
or cacheability.

Operation

IF AddressSize = 32
THEN

Count is ECX;
ELSE (* AddressSize = 16 *)

Count is CX;
FI;
Count ← Count – 1;

IF instruction in not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0

E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count ≠ 0 and ZF=0

11-274

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter (continued)
THEN

IF (ZF =1) AND (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)

THEN
IF (ZF =0) AND (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
FI;

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

11-275

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit

Description

Loads the unscrambled segment limit from the segment descriptor specified with the second
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains
the segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of
the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction
will translate the page granular limit (page limit) into a byte limit before loading it into the desti-
nation operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and
filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun-
cated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the desti-
nation register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special
segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16 ← segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32 ← segment limit, selector r/m32)

11-276

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (continued)

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
temp ← SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ← ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST ← temp;

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

11-277

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (continued)
ELSE (*OperandSize = 16*)

DEST ← temp AND FFFFH;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LSL instruction is not recognized in virtual 8086 mode.

11-278

INSTRUCTION SET REFERENCE

LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

11-279

INSTRUCTION SET REFERENCE

LTR—Load Task Register

Description

Loads the source operand into the segment selector field of the task register. The source operand
(a general-purpose register or a memory location) contains a segment selector that points to a
task state segment (TSS). After the segment selector is loaded in the task register, the processor
uses to segment selector to locate the segment descriptor for the TSS in the global descriptor
table (GDT). It then loads the segment limit and base address for the TSS from the segment
descriptor into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is
commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation
IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector);
FI;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into TR

11-280

INSTRUCTION SET REFERENCE

LTR—Load Task Register (continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LTR instruction is not recognized in virtual 8086 mode.

11-281

INSTRUCTION SET REFERENCE

MOV—Move

Notes
* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where

8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value
66H preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the RET instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16 Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

11-282

INSTRUCTION SET REFERENCE

MOV—Move (continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit general-purpose
register, the Pentium Pro processor does not require the use of a 16-bit operand size prefix;
however, some assemblers do require this prefix. The processor assumes that the 16 least-signif-
icant bits of the general-purpose register are the destination or source operand. When moving a
value from a segment selector to a 32-bit register, the processor fills the two high-order bytes of
the register with zeros.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;

11-283

INSTRUCTION SET REFERENCE

MOV—Move (continued)

SS ← segment descriptor;
FI;

FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

11-284

INSTRUCTION SET REFERENCE

MOV—Move (continued)

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

#UD If attempt is made to load the CS register.

11-285

INSTRUCTION SET REFERENCE

MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose register
or vice versa. The operand size for these instructions is always 32 bits, regardless of the operand-
size attribute. (See “Control Registers” in Chapter 2, System Architecture Overview, of the
Pentium Pro Family Developer’s Manual, Volume 3 for a detailed description of the flags and
fields in the control registers.)

When loading a control register, a program should not attempt to change any of the reserved bits;
that is, always set reserved bits to the value previously read.

At the opcode level, the reg field within the ModR/M byte specifies which of the control regis-
ters is loaded or read. The 2 bits in the mod field are always 11B. The r/m field specifies the
general-purpose register loaded or read.

These instructions have the following side effects:

• When writing to control register CR3, all non-global TLB entries are flushed (see “Trans-
lation Lookaside Buffers (TLBs)”) in Chapter 3, Protected-Mode Memory Management,
of the Pentium Pro Family Developer’s Manual, Volume 3.

• When modifying any of the paging flags in the control registers (PE and PG in register
CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including
global entries. This operation is implementation specific for the Pentium Pro processor.
Software should not depend on this functionality in future Intel Architecture processors.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to
enable the physical address extension mode), the pointers (PDPTRs) in the page-directory
pointers table will be loaded into the processor (into internal, non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will
cause the PDPTRs to be reloaded into the processor.

• If the PAE flag is set to 1 and control register CR0 is written to set the PG flag, the
PDPTRs are reloaded into the processor.

Opcode Instruction Description

0F 22 /r MOV CR0,r32 Move r32 to CR0

0F 22 /r MOV CR2,r32 Move r32 to CR2

0F 22 /r MOV CR3,r32 Move r32 to CR3

0F 22 /r MOV CR4,r32 Move r32 to CR4

0F 20 /r MOV r32,CR0 Move CR0 to r32

0F 20 /r MOV r32,CR2 Move CR2 to r32

0F 20 /r MOV r32,CR3 Move CR3 to r32

0F 20 /r MOV r32,CR4 Move CR4 to r32

11-286

INSTRUCTION SET REFERENCE

MOV—Move to/from Control Registers (continued)

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory pointers
table (used in the extended physical addressing mode) when the PAE flag
in control register CR4 and the PG flag in control register CR0 are set to 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual 8086 mode.

11-287

INSTRUCTION SET REFERENCE

MOV—Move to/from Debug Registers

Description

Moves the contents of two or more debug registers (DR0 through DR3, DR4 and DR5, or DR6
and DR7) to a general-purpose register or vice versa. The operand size for these instructions is
always 32 bits, regardless of the operand-size attribute. (See Chapter 10, Debugging and Perfor-
mance Monitoring, of the Pentium Pro Family Developer’s Manual, Volume 3 for a detailed
description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode,
references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE set in CR4 is set,
attempts to reference DR4 and DR5 result in an undefined opcode (#UD) exception.

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers
is loaded or read. The two bits in the mod field are always 11. The r/m field specifies the general-
purpose register loaded or read.

Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

Opcode Instruction Description

0F 21/r MOV r32, DR0-DR3 Move debug registers to r32

0F 21/r MOV r32, DR4-DR5 Move debug registers to r32

0F 21/r MOV r32, DR6-DR7 Move debug registers to r32

0F 23 /r MOV DR0-DR3, r32 Move r32 to debug registers

0F 23 /r MOV DR4-DR5, r32 Move r32 to debug registers

0F 23 /r MOV DR6-DR7,r32 Move r32 to debug registers

11-288

INSTRUCTION SET REFERENCE

MOV—Move to/from Debug Registers (continued)

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Virtual 8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual 8086 mode.

11-289

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). The source operand specifies the
memory location at the address DS:ESI and the destination operand specifies the memory loca-
tion at address ES:EDI. (When the operand-size attribute is 16, the SI and DI register are used
as the source-index and destination-index registers, respectively.) The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and double-
word versions of the MOVS instructions. They are simpler to use, but provide no type or
segment checking. (For the MOVS instruction, “DS:ESI” and “ES:EDI” must be explicitly
specified in the instruction.)

After the transfer, the ESI and EDI registers are incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.)
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations,
or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on page
11-333) for block moves of ECX bytes, words, or doublewords.

Operation

DEST ←SRC;
IF (byte move)

THEN IF DF = 0
THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word move)

THEN IF DF = 0
THEN DI ← 2;

Opcode Instruction Description

A4 MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS ES:DI,DS:SI Move word at address DS:SI to address ES:DI

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address
ES:EDI

A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:SI to address ES:DI

A5 MOVSD Move doubleword at address DS:ESI to address
ES:EDI

11-290

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(continued)

ELSE DI ← –2;
FI;
ELSE (* doubleword move*)

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-291

INSTRUCTION SET REFERENCE

MOVSX—Move with Sign-Extension

Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5 on page 6-18). The
size of the converted value depends on the operand-size attribute.

Operation

DEST ← SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension

11-292

INSTRUCTION SET REFERENCE

MOVZX—Move with Zero-Extend

Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5 on page 6-18). The
size of the converted value depends on the operand-size attribute.

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value
depends on the operand-size attribute.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension

0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension

0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension

11-293

INSTRUCTION SET REFERENCE

MOVZX—Move with Zero-Extend (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-294

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiplication of AL, AX, or EAX

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in the following table.

:

The AH, DX, or EDX registers (depending on the operand size) contain the high-order bits of
the product. If the contents of one of these registers are 0, the CF and OF flags are cleared; other-
wise, the flags are set.

Operation

IF byte operation
THEN

AX ← AL ∗ SRC
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC
ELSE (* OperandSize = 32 *)

EDX:EAX ← EAX ∗ SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they are set
to 1. The SF, ZF, AF, and PF flags are undefined.

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX ← AL ∗ r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX ← AX ∗ r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX ← EAX ∗ r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

11-295

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiplication of AL, AX, or EAX (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-296

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. The desti-
nation operand is located in a general-purpose register or a memory location.

Operation

IF DEST = 0
THEN CF ← 0
ELSE CF ← 1;

FI;
DEST ← – (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF,
and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

11-297

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-298

INSTRUCTION SET REFERENCE

NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG EAX, EAX instruction.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation

11-299

INSTRUCTION SET REFERENCE

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (1’s complement) on the destination operand and stores the
result in the destination operand location. The destination operand can be a register or a memory
location.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32

11-300

INSTRUCTION SET REFERENCE

NOT—One's Complement Negation (continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-301

INSTRUCTION SET REFERENCE

OR—Logical Inclusive OR

Description

Performs a bitwise OR operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAXOR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81 /1 id OR r/m32,imm32 r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8

83 /1 ib OR r/m32,imm8 r/m32 OR imm8

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32

11-302

INSTRUCTION SET REFERENCE

OR—Logical Inclusive OR (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-303

INSTRUCTION SET REFERENCE

OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows I/O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows I/O ports
from 0 to 65,535 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* Real-address mode or protected mode with CPL ≤ IOPL *)
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

Flags Affected

None.

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte AL to imm8 I/O port address

E7 ib OUT imm8, AX Output word AX to imm8 I/O port address

E7 ib OUT imm8, EAX Output doubleword EAX to imm8 I/O port address

EE OUT DX, AL Output byte AL to I/O port address in DX

EF OUT DX, AX Output word AX to I/O port address in DX

EF OUT DX, EAX Output doubleword EAX to I/O port address in DX

11-304

INSTRUCTION SET REFERENCE

OUT—Output to Port (continued)

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

11-305

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the second operand (source operand) to the I/O port specified with the first
operand (destination operand). The source operand is a memory location at the address DS:ESI.
(When the operand-size attribute is 16, the SI register is used as the source-index register.) The
DS register may be overridden with a segment override prefix.

The destination operand must be the DX register, allowing I/O port addresses from 0 to 65,535
to be accessed. When accessing an 8-bit I/O port, the opcode determines the port size; when
accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

The OUTSB, OUTSW and OUTSD mnemonics are synonyms of the byte, word, and double-
word versions of the OUTS instructions. (For the OUTS instruction, “DS:ESI” must be
explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location to the I/O port, the
ESI register is incremented or decremented automatically according to the setting of the DF flag
in the EFLAGS register. (If the DF flag is 0, the ESI register is incremented; if the DF flag is 1,
the EDI register is decremented.) The ESI register is incremented or decremented by 1 for byte
operations, by 2 for word operations, or by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” on page 11-333 for a description of the REP prefix.

After an OUTS, OUTSB, OUTSW, or OUTSD instruction is executed, the processor ensures
that the EWBE# pin has been sampled active before beginning to execute the next instruction.
Note that the instruction may be prefetched if EWBE# is not active, but it will not execute until
EWBE# is sampled active.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)

Opcode Instruction Description

6E OUTS DX, DS:(E)SI Output byte at address DS:(E)SI to I/O port in DX

6F OUTS DX, DS:SI Output word at address DS:SI to I/O port in DX

6F OUTS DX, DS:ESI Output doubleword at address DS:ESI to I/O port in DX

6E OUTSB Output byte at address DS:(E)SI to I/O port in DX

6F OUTSW Output word at address DS:SI to I/O port in DX

6F OUTSD Output doubleword at address DS:ESI to I/O port in DX

11-306

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (continued)

THEN #GP(0);
FI;

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Writes to I/O port *)
IF (byte operation)

THEN IF DF = 0
THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word operation)

THEN IF DF = 0
THEN DI ← 2;
ELSE DI ← –2;

FI;
ELSE (* doubleword operation *)

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segments is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

11-307

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-308

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack

Description

Loads the value from the top of the procedure stack to the location specified with the destination
operand and then increments the stack pointer. The destination operand can be a general-purpose
register, memory location, or segment register.

The current address-size attribute for the stack segment and the operand-size attribute determine
the amount the stack pointer is incremented (see the “Operation” below). For example, if 32-bit
addressing and operands are being used, the ESP register (stack pointer) is incremented by 4
and, if 16-bit addressing and operands are being used, the SP register (stack pointer for 16-bit
addressing) is incremented by 2. The B flag in the stack segment’s segment descriptor deter-
mines the stack’s address-size attribute.

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose corre-
sponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register
is null.

The POP instruction cannot pop a value into the CS register. To load the CS register, use the RET
instruction.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instructions computes the effective address of the operand after it increments the ESP
register.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

11-309

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (continued)

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* copy a word *)

ESP ← ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST ← SS:SP; (* copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* copy a doubleword *)
SP ← SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;

11-310

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (continued)

FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

11-311

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (continued)

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

11-312

INSTRUCTION SET REFERENCE

POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the procedure stack into the general-
purpose registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the current operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and
AX (if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is ignored.
Instead, the ESP or SP register is incremented after each register is loaded (see the “Operation”
below).

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPA is used and to 32 when POPAD is used. Others may treat these
mnemonics as synonyms (POPA/POPAD) and use the current setting of the operand-size
attribute to determine the size of values to be popped from the stack, regardless of the mnemonic
used.

Operation

IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
increment ESP by 2 (* skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX

11-313

INSTRUCTION SET REFERENCE

POPA/POPAD—Pop All General-Purpose Registers (continued)

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-314

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is
32) and stores the value in the EFLAGS register or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register. (These
instructions reverse the operation of the PUSHF/PUSHFD instructions.)

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode.
The POPF instruction is intended for use when the operand-size attribute is 16 and the POPFD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPF is used and to 32 when POPFD is used. Others may treat these mnemonics
as synonyms (POPF/POPFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be popped from the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly,
depending on the mode of operation of the processor. When the processor is operating in
protected mode at privilege level 0 (or in real-address mode, which is equivalent to privilege
level 0), all the non-reserved flags in the EFLAGS register except the VIP and VIF flags can be
modified. The VIP and VIF flags are cleared.

When operating in protected mode, but with a privilege level greater an 0, all the flags can be
modified except the IOPL field and the VIP and VIF flags. Here, the IOPL flags are masked and
the VIP and VIF flags are cleared.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3 to use
POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are masked. If the IOPL
is less than 3, the POPF/POPFD instructions cause a general protection exception (#GP).

See “EFLAGS Register” on page 3-9 for information about the EFLAGS registers.

The IOPL is altered only when executing at privilege level 0. The interrupt flag is altered only
when executing at a level at least as privileged as the IOPL. (Real-address mode is equivalent
to privilege level 0.) If a POPF/POPFD instruction is executed with insufficient privilege, an
exception does not occur, but the privileged bits do not change.

Opcode Instruction Description

9D POPF Pop top of stack into EFLAGS

9D POPFD Pop top of stack into EFLAGS

11-315

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register (continued)

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN IF CPL=0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop();
(* All non-reserved flags except VIP and VIF can be modified; *)
(* VIP and VIF are cleared *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN

EFLAGS ← Pop()
(* All non-reserved bits except IOPL, VIP, and VIF can be modified; *)
(* IOPL is masked; VIP and VIF are cleared *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop();
(* All non-reserved bits except IOPL can be modified; IOPL is masked *)

FI;
FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN IF OperandSize=32

THEN
EFLAGS ← Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are masked*)

ELSE
EFLAGS[15:0] ← Pop()
(* All non-reserved bits except IOPL can be modified; IOPL is masked*)

FI;
ELSE (* IOPL < 3 *)

#GP(0); (* trap to virtual-8086 monitor *)
FI;

FI;
FI;

Flags Affected

All flags except the reserved bits.

11-316

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register (continued)

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an
operand-size override prefix.

#SS(0) If a memory operand effective address is outside the SS segment limit.

11-317

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the procedure
stack. The current address-size attribute for the stack segment and the operand-size attribute
determine the amount the stack pointer is decremented (see the “Operation” below). For
example, if 32-bit addressing and operands are being used, the ESP register (stack pointer) is
decremented by 4 and, if 16-bit addressing and operands are being used, the SP register (stack
pointer for 16-bit addressing) is decremented by 2. Pushing 16-bit operands when the stack
address-size attribute is 32 can result in a misaligned the stack pointer (that is, the stack pointer
not aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP
register is used as a base register for computing the operand address, the effective address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP ← ESP − 4;
SS:ESP ← SRC; (* push doubleword *)

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

11-318

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (continued)
ELSE (* OperandSize = 16*)

ESP ← ESP − 2;
SS:ESP ← SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

IF OperandSize = 16
THEN

SP ← SP − 2;
 SS:SP ← SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP ← SP − 4;
SS:SP ← SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

11-319

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

For Intel Architecture processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is also true in
the real-address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction
pushes the new value of the SP register (that is the value after it has been decremented by 2).

11-320

INSTRUCTION SET REFERENCE

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Push the contents of the general-purpose registers onto the procedure stack. The registers are
stored on the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value),
EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (orig-
inal value), BP, SI, and DI (if the operand-size attribute is 16). (These instructions perform the
reverse operation of the POPA/POPAD instructions.) The value pushed for the ESP or SP
register is its value before prior to pushing the first register (see the “Operation” below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat
these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-
size attribute to determine the size of values to be pushed from the stack, regardless of the
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI

11-321

INSTRUCTION SET REFERENCE

PUSHA/PUSHAD—Push All General-Purpose Registers (continued)
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual 8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

11-322

INSTRUCTION SET REFERENCE

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrement the stack pointer by 4 (if the current operand-size attribute is 32) and push the entire
contents of the EFLAGS register onto the procedure stack or decrement the stack pointer by 2
(if the operand-size attribute is 16) push the lower 16 bits of the EFLAGS register onto the stack.
(These instructions reverse the operation of the POPF/POPFD instructions.) See “EFLAGS
Register” on page 3-9 for information about the EFLAGS registers.

When copying the entire EFLAGS register to the stack, bits 16 and 17, called the VM and RF
flags, are not copied. Instead, the values for these flags are cleared in the EFLAGS image stored
on the stack.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

When the I/O privilege level (IOPL) is less than 3 in virtual-8086 mode, the PUSHF/PUSHFD
instructions causes a general protection exception (#GP). The IOPL is altered only when
executing at privilege level 0. The interrupt flag is altered only when executing at a level at least
as privileged as the IOPL. (Real-address mode is equivalent to privilege level 0.) If a
PUSHF/PUSHFD instruction is executed with insufficient privilege, an exception does not
occur, but the privileged bits do not change.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize = 32
THEN

push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE
push(EFLAGS); (* Lower 16 bits only *)

FI;

Opcode Instruction Description

9C PUSHF Push EFLAGS

9C PUSHFD Push EFLAGS

11-323

INSTRUCTION SET REFERENCE

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack
(continued)

ELSE (* In Virtual-8086 Mode *)
IF IOPL=3

THEN
IF OperandSize = 32

THEN push(EFLAGS AND 0FCFFFFH);
(* VM and RF EFLAGS bits are cleared in image stored on the stack*)

ELSE push(EFLAGS); (* Lower 16 bits only *)
FI;

ELSE
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment boundary.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.

11-324

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8,1 Rotate 9 bits (CF,r/m8) left once

D2 /2 RCL r/m8,CL Rotate 9 bits (CF,r/m8) left CL times

C0 /2 ib RCL r/m8,imm8 Rotate 9 bits (CF,r/m8) left imm8 times

D1 /2 RCL r/m16,1 Rotate 17 bits (CF,r/m16) left once

D3 /2 RCL r/m16,CL Rotate 17 bits (CF,r/m16) left CL times

C1 /2 ib RCL r/m16,imm8 Rotate 17 bits (CF,r/m16) left imm8 times

D1 /2 RCL r/m32,1 Rotate 33 bits (CF,r/m32) left once

D3 /2 RCL r/m32,CL Rotate 33 bits (CF,r/m32) left CL times

C1 /2 ib RCL r/m32,imm8 Rotate 33 bits (CF,r/m32) left imm8 times

D0 /3 RCR r/m8,1 Rotate 9 bits (CF,r/m8) right once

D2 /3 RCR r/m8,CL Rotate 9 bits (CF,r/m8) right CL times

C0 /3 ib RCR r/m8,imm8 Rotate 9 bits (CF,r/m8) right imm8 times

D1 /3 RCR r/m16,1 Rotate 17 bits (CF,r/m16) right once

D3 /3 RCR r/m16,CL Rotate 17 bits (CF,r/m16) right CL times

C1 /3 ib RCR r/m16,imm8 Rotate 17 bits (CF,r/m16) right imm8 times

D1 /3 RCR r/m32,1 Rotate 33 bits (CF,r/m32) right once

D3 /3 RCR r/m32,CL Rotate 33 bits (CF,r/m32) right CL times

C1 /3 ib RCR r/m32,imm8 Rotate 33 bits (CF,r/m32) right imm8 times

D0 /0 ROL r/m8,1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8,CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8,imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16,1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16,CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16,imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32,1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32,CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32,imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8,1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8,CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8,imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16,1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16,CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16,imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32,1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32,CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32,imm8 Rotate 32 bits r/m32 right imm8 times

11-325

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (continued)

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination operand.
The destination operand can be a register or a memory location; the count operand is an unsigned
integer that can be an immediate or a value in the CL register. The processor restricts the count
to a number between 0 and 31 by masking all the bits in the count operand except the 5 least-
significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward
more-significant bit positions, except for the most-significant bit, which is rotated to the least-
significant bit location (see Figure 6-10 on page 6-25). The rotate right (ROR) and rotate
through carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit location (see
Figure 6-10 on page 6-25).

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag (see
Figure 6-10 on page 6-25). The RCR instruction shifts the CF flag into the most-significant bit
and shifts the least-significant bit into the CF flag (see Figure 6-10 on page 6-25). For the ROL
and ROR instructions, the original value of the CF flag is not a part of the result, but the CF flag
receives a copy of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases. For left rotates,
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-significant bit
of the result. For right rotates, the OF flag is set to the exclusive OR of the two most-significant
bits of the result.

Operation
SIZE ← OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE = 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE = 32: tempCOUNT ← COUNT AND 1FH;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← tempCF;
IF COUNT = 1

11-326

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (continued)

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* ROR instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;
(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← tempCF;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF * 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
IF COUNT = 1
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-
bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and
PF flags are not affected.

11-327

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (continued)

Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

The 8086 does not mask the rotation count. All Intel Architecture processors from the Intel386
processor on do mask the rotation count in all operating modes.

11-328

INSTRUCTION SET REFERENCE

RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX register into
registers EDX:EAX. The EDX register is loaded with the high-order 32 bits of the MSR and the
EAX register is loaded with the low-order 32 bits. If less than 64 bits are implemented in the
MSR being read, the values returned to EDX:EAX in unimplemented bit locations are unde-
fined.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Appendix C, Model-Specific Registers (MSRs), in the Pentium Pro
Family Developer’s Manual, Volume 3 lists all the MSRs that can be read with this instruction
and their addresses.

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR address.

Virtual 8086 Mode Exceptions

#GP(0) The RDMSR instruction is not recognized in virtual 8086 mode.

Opcode Instruction Description

0F 32 RDMSR Load MSR specified by ECX into EDX:EAX

11-329

INSTRUCTION SET REFERENCE

RDMSR—Read from Model Specific Register (continued)

Intel Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi-
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD.

11-330

INSTRUCTION SET REFERENCE

RDPMC—Read Performance-Monitoring Counters

Description

Loads the contents of the 40-bit performance-monitoring counter specified in the ECX register
into registers EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter
and the EAX register is loaded with the low-order 32 bits. The Pentium Pro processor has two
performance-monitoring counters (0 and 1), which are specified by placing 0000H or 0001H,
respectively, in the ECX register.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3 to read
the performance-monitoring counters if the PCE flag in the CR4 register is set. This instruction
is provided to allow performance monitoring by application code without incurring the overhead
of a call to an operating-system procedure.

The performance-monitoring counters are event counters that can be programmed to count
events such as the number of instructions decoded, number of interrupts received, or number of
cache loads. Appendix B, Performance Monitoring Counters, in the Pentium Pro Family Devel-
oper’s Manual, Volume 3 lists all the events that can be counted.

The RDPMC instruction does not serialize instruction execution. That is, it does not imply that
all the events caused by the preceding instructions have been completed or that events caused
by subsequent instructions have not begun. If an exact event count is desired, software must use
a serializing instruction (such as the CPUID instruction) before and/or after the execution of the
RDPCM instruction.

The RDPMC instruction can execute in 16-bit addressing mode or virtual 8086 mode; however,
the full contents of the ECX register are used to determine the counter to access and a full 40-bit
result is returned (the low-order 32 bits in the EAX register and the high-order 9 bits in the EDX
register).

Operation

IF (ECX = 0 OR 1) AND ((CR4.PCE = 1) OR ((CR4.PCE = 0) AND (CPL=0)))
THEN

EDX:EAX ← PMC[ECX];
ELSE (* ECX is not 0 or 1 and/or CR4.PCE is 0 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Flags Affected

None.

Opcode Instruction Description

0F 33 RDPMC Read performance-monitoring counter specified by ECX
into EDX:EAX

11-331

INSTRUCTION SET REFERENCE

RDPMC—Read Performance-Monitoring Counters (continued)

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register
is clear.

If the value in the ECX register is not 0 or 1.

Real Address Mode Exceptions

#GP If the PCE flag in the CR4 register is clear.

If the value in the ECX register is not 0 or 1.

Virtual 8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear.

If the value in the ECX register is not 0 or 1.

11-332

INSTRUCTION SET REFERENCE

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter into the EDX:EAX registers. The
time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits of the MSR are loaded
into the EDX register, and the low-order 32 bits are loaded into the EAX register. The processor
increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever the
processor is reset.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction.
When the TSD flag is clear, the RDTSC instruction can be executed at any privilege level; when
the flag is set, the instruction can only be executed at privilege level 0. The time-stamp counter
can also be read with the RDMSR instruction.

The RDTSC instruction is not serializing instruction. Thus, it does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent
instructions may begin execution before the read operation is performed.

This instruction was introduced into the Intel Architecture in the Pentium processor.

Operation

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=0))
THEN

EDX:EAX ← TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.

Real Address Mode Exceptions

#GP If the TSD flag in register CR4 is set.

Virtual 8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.

Opcode Instruction Description

0F 31 RDTSC Read time-stamp counter into EDX:EAX

11-333

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register (ECX) or until
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP
prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE,
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The
REPZ and REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respec-
tively.) The behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions,
use the LOOP instruction or another looping construct.

Opcode Instruction Description

F3 6C REP INS r/m8, DX Input ECX bytes from port DX into ES:[EDI]

F3 6D REP INS r/m16,DX Input ECX words from port DX into ES:[EDI]

F3 6D REP INS r/m32,DX Input ECX doublewords from port DX into ES:[EDI]

F3 A4 REP MOVS m8,m8 Move ECX bytes from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m16,m16 Move ECX words from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m32,m32 Move ECX doublewords from DS:[ESI] to ES:[EDI]

F3 6E REP OUTS DX,r/m8 Output ECX bytes from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m16 Output ECX words from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m32 Output ECX doublewords from DS:[ESI] to port DX

F3 AC REP LODS AL Load ECX bytes from DS:[ESI] to AL

F3 AD REP LODS AX Load ECX words from DS:[ESI] to AX

F3 AD REP LODS EAX Load ECX doublewords from DS:[ESI] to EAX

F3 AA REP STOS m8 Fill ECX bytes at ES:[EDI] with AL

F3 AB REP STOS m16 Fill ECX words at ES:[EDI] with AX

F3 AB REP STOS m32 Fill ECX doublewords at ES:[EDI] with EAX

F3 A6 REPE CMPS m8,m8 Find nonmatching bytes in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m16,m16 Find nonmatching words in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m32,m32 Find nonmatching doublewords in ES:[EDI] and DS:[ESI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[EDI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[EDI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[EDI]

F2 A6 REPNE CMPS m8,m8 Find matching bytes in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m16,m16 Find matching words in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m32,m32 Find matching doublewords in ES:[EDI] and DS:[ESI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[EDI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[EDI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[EDI]

11-334

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(continued)

All of these repeat prefixes cause the associated instruction to be repeated until the count in
register ECX is decremented to 0 (see the following table). The REPE, REPNE, REPZ, and
REPNZ prefixes also check the state of the ZF flag after each iteration and terminate the repeat
loop if the ZF flag is not in the specified state. When both termination conditions are tested, the
cause of a repeat termination can be determined either by testing the ECX register with a JECXZ
instruction or by testing the ZF flag with a JZ, JNZ, and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a page fault occurs during CMPS or SCAS instructions that are prefixed with REPNE, the
EFLAGS value is restored to the state prior to the execution of the instruction. Since SCAS and
CMPS do not use EFLAGS as an input, the processor can resume the instruction after the page
fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Operation

IF AddressSize = 16
THEN

use CX for CountReg;
ELSE (* AddressSize = 32 *)

use ECX for CountReg;
FI;
WHILE CountReg ≠ 0

DO

Repeat Conditions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1

11-335

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(continued)

service pending interrupts (if any);
execute associated string instruction;
CountReg ← CountReg – 1;
IF CountReg = 0

THEN exit WHILE loop
FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

11-336

INSTRUCTION SET REFERENCE

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed.

The RET instruction can be used to execute three different types of returns:

• Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See “Calling
Procedures Using CALL and RET” on page 4-4 for detailed information on near, far, and inter-
privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the procedure stack into the EIP register and begins program execution at the new instruc-
tion pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
procedure stack into the EIP register, then pops the segment selector from the top of the stack
into the CS register. The processor then begins program execution in the new code segment at
the new instruction pointer.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes
from stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from
stack

11-337

INSTRUCTION SET REFERENCE

RET—Return from Procedure (continued)

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize=16 *)

SP ← SP + SRC;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); FI;
tempEIP ← Pop();

11-338

INSTRUCTION SET REFERENCE

RET—Return from Procedure (continued)
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand THEN SP ← SP + (SRC AND FFFFH); FI;

FI;

(* Protected mode, not virtual 8086 mode *)
IF (PE = 1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits THEN #SS(0); FI;

ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits THEN #SS(0); FI;

FI;
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit

THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is nat a code segment THEN #GP(selector); FI;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is condorming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit

THEN #GP(0);
FI;
IF OperandSize=32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
ESP ← ESP + SRC;

ELSE (* OperandSize=16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

11-339

INSTRUCTION SET REFERENCE

RET—Return from Procedure (continued)

ESP ← ESP + SRC;
FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32)

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector

OR stack segment is not a writable data segment
OR stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present THEN #SS(StackSegmentSelector); FI;

IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
 CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize=32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize=16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

11-340

INSTRUCTION SET REFERENCE

RET—Return from Procedure (continued)

FOR each of segment register (ES, FS, GS, and DS)
DO;

IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ← 0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
OR segment descriptor indicates the segment is not a data or

readable code segment
OR if the segment is a data or non-conforming code segment and the segment

descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register ← null selector;
OD;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.

If the return instruction pointer is not within the return code segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

If the return code segment descriptor does not indicate a code segment.

If the return code segment is non-conforming and the segment selector’s
DPL is not equal to the RPL of the code segment’s segment selector

If the return code segment is conforming and the segment selector’s DPL
greater than the RPL of the code segment’s segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

11-341

INSTRUCTION SET REFERENCE

RET—Return from Procedure (continued)

#SS(0) If the top bytes of stack are not within stack limits.

If the return stack segment is not present.

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

11-342

INSTRUCTION SET REFERENCE

ROL/ROR—Rotate

See entry for RCL/RCR/ROL/ROR.

11-343

INSTRUCTION SET REFERENCE

RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application program or
operating system procedure that was interrupted when the processor received an SSM interrupt.
The processor’s state is restored from the dump created upon entering SMM. If the processor
detects invalid state information during state restoration, it enters the shutdown state. The
following invalid information can cause a shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and CD=0).

• (Intel Pentium and Intel486 only.) The value stored in the state dump base field is not a
32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

See Chapter 9 in the Pentium Pro Family Developer’s Manual, Volume 3 for more information
about SMM and the behavior of the RSM instruction.

Operation

ReturnFromSSM;
ProcessorState ← Restore(SSMDump);

Flags Affected

All.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Real Address Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Virtual 8086 Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Opcode Instruction Description

0F AA RSM Resume operation of interrupted program

11-344

INSTRUCTION SET REFERENCE

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corre-
sponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register
AH are ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS registers are set as
shown in the “Operation” below

Operation

EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5
of the EFLAGS register are set to 1, 0, and 0, respectively.

Exceptions (All Operating Modes)

None.

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into
EFLAGS register

11-345

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift Instructions

Notes
* Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

11-346

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift Instructions (continued)

Description

Shift the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, thc
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or register CL. The count is masked to 5 bits, which limits the count range to
from 0 to 31. A special opcode encoding is provide for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 6-6 on page 6-22).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most significant
bit is either set or cleared depending on the instruction type. The SHR instruction clears the most
significant bit (see Figure 6-7 on page 6-23); the SAR instruction sets or clears the most signif-
icant bit to correspond to the sign (most significant bit) of the original value in the destination
operand. In effect, the SAR instruction fills the empty bit position’s shifted value with the sign
of the unshifted value (see Figure 6-8 on page 6-24).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction shift a signed
integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

Operation

tempCOUNT ← COUNT;
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)

11-347

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift Instructions (continued)

DO
IF instruction is SAL or SHL

THEN
CF ← MSB(DEST);

ELSE (* instruction is SAR or SHR *)
CF ← LSB(DEST);

FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *);

FI;
FI;
temp ← temp – 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE
OF ← undefined;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions count is greater than or equal to the size of the destination
operand. The OF flag is affected only for 1-bit shifts (see “Description” above); otherwise, it is
undefined. The SF, ZF, and PF flags are set according to the result. If the count is 0, the flags are
not affected.

11-348

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift Instructions (continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

The 8086 does not mask the shift count. All Intel Architecture processors from the Intel386
processor on do mask the rotation count in all operating modes.

11-349

INSTRUCTION SET REFERENCE

SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from
the destination operand (first operand). The result of the subtraction is stored in the destination
operand. The destination operand can be a register or a memory location; the source operand can
be an immediate, a register, or a memory location. The state of the CF flag represents a borrow
from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which
a SUB instruction is followed by a SBB instruction.

Operation

DEST ← DEST – (SRC + CF);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32

11-350

INSTRUCTION SET REFERENCE

SBB—Integer Subtraction with Borrow (continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-351

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String Data

Description

Compares the byte, word, or double word specified with the source operand with the value in
the AL, AX, or EAX register, respectively, and sets the status flags in the EFLAGS register
according to the results. The source operand specifies the memory location at the address
ES:EDI. (When the operand-size attribute is 16, the DI register is used as the source-index
register.) The ES segment cannot be overridden with a segment override prefix.

The SCASB, SCASW, and SCASD mnemonics are synonyms of the byte, word, and double-
word versions of the SCAS instructions. They are simpler to use, but provide no type or segment
checking. (For the SCAS instruction, “ES:EDI” must be explicitly specified in the instruction.)

After the comparison, the EDI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is incre-
mented; if the DF flag is 1, the EDI register is decremented.) The EDI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword opera-
tions.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat
Following String Operation” on page 11-333 for a description of the REP prefix.

Operation

IF (byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word comparison)

THEN
temp ← AX − SRC;
SetStatusFlags(temp)

Opcode Instruction Description

AE SCAS ES:(E)DI Compare AL with byte at ES:(E)DI and set status flags

AF SCAS ES:DI Compare AX with word at ES:DI and set status flags

AF SCAS ES:EDI Compare EAX with doubleword at ES:EDI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:DI and set status flags

AF SCASD Compare EAX with doubleword at ES:EDI and set status flags

11-352

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String Data (continued)

THEN IF DF = 0
THEN DI ← 2;
ELSE DI ← –2;

FI;
ELSE (* doubleword comparison *)

temp ← EAX − SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-353

INSTRUCTION SET REFERENCE

SETcc—Set Byte on Condition

Description

Set the destination operand to the value 0 or 1, depending on the settings of the status flags (CF,
SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a byte register
or a byte in memory. The condition code suffix (cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship
between two unsigned integer values. The terms “greater” and “less” are associated with the SF
and OF flags and refer to the relationship between two signed integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or (ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)

11-354

INSTRUCTION SET REFERENCE

SETcc—Set Byte on Condition (continued)

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the SETG (set
byte if greater) and SETNLE (set if not less or equal) both have the same opcode and test for the
same condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make
code more intelligible. Appendix B, EFLAGS Condition Codes, shows the alternate mnemonics
for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be
arrived at by choosing the mutually exclusive condition for the SETcc instruction, then decre-
menting the result. For example, to test for overflow, use the SETNO instruction, then decrement
the result.

Operation

IF condition
THEN DEST ← 1
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-355

INSTRUCTION SET REFERENCE

SETcc—Set Byte on Condition (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-356

INSTRUCTION SET REFERENCE

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register

Description

Stores the contents of the global descriptor table register (GDTR) or the interrupt descriptor
table register (IDTR) in the destination operand. The destination operand is a pointer to 6-byte
memory location. If the operand-size attribute is 32 bits, the 16-bit limit field of the register is
stored in the lower 2 bytes of the memory location and the 32-bit base address is stored in the
upper 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the lower 2 bytes and
the 24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte is filled
with 0s.

The SGDT and SIDT instructions are useful only in operating-system software; however, they
can be used in application programs.

See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” on page 11-261 for infor-
mation on loading the GDTR and IDTR.

Operation

IF instruction is IDTR
THEN

IF OperandSize = 16
THEN

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN

DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* full 32-bit base address loaded *)

FI;
FI;

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m

11-357

INSTRUCTION SET REFERENCE

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
(continued)

Flags Affected

None.

Protected Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real Address Mode Exceptions

#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

11-358

INSTRUCTION SET REFERENCE

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
(continued)

Intel Architecture Compatibility

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits with 1s;
the Pentium Pro processor fills these bits with 0s.

11-359

INSTRUCTION SET REFERENCE

SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR.

11-360

INSTRUCTION SET REFERENCE

SHLD—Double Precision Shift Left

Description

Shifts the first operand (destination operand) to the left the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
right (starting with bit 0 of the destination operand). The destination operand can be a register
or a memory location; the source operand is a register. The count operand is an unsigned integer
that can be an immediate byte or the contents of the CL register. Only bits 0 through 4 of the
count are used, which masks the count to a value between 0 and 31. If the count is greater than
the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, the flags are not affected.

The SHLD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWNTO COUNT
DO

Bit(DEST, i) ← Bit(DEST, i – COUNT);
OD;
FOR i ← COUNT – 1 DOWNTO 0

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16
in from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in
from the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32
in from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in
from the right

11-361

INSTRUCTION SET REFERENCE

SHLD—Double Precision Shift Left (continued)

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-362

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right

Description

Shifts the first operand (destination operand) to the right the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
left (starting with the most significant bit of the destination operand). The destination operand
can be a register or a memory location; the source operand is a register. The count operand is an
unsigned integer that can be an immediate byte or the contents of the CL register. Only bits 0
through 4 of the count are used, which masks the count to a value between 0 and 31. If the count
is greater than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i – COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from
r16 in from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16
in from the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from
r32 in from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32
in from the left

11-363

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right (continued)

BIT[DEST,i] ← BIT[inBits,i+COUNT – SIZE];
OD;

FI;
FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-364

INSTRUCTION SET REFERENCE

SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT.

11-365

INSTRUCTION SET REFERENCE

SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination
operand. The destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the LDT.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared to 0s. With the desti-
nation operand is a memory location, the segment selector is written to memory as a 16-bit quan-
tity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The SLDT instruction is not recognized in real address mode.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of
r/m32; high-order 16 bits are undefined

11-366

INSTRUCTION SET REFERENCE

SLDT—Store Local Descriptor Table Register (continued)

Virtual 8086 Mode Exceptions

#UD The SLDT instruction is not recognized in virtual 8086 mode.

11-367

INSTRUCTION SET REFERENCE

SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the destination
operand. The destination operand can be a 16-bit general-purpose register or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are
copied into the low-order 16 bits of the register and the upper 16 bits of the register are unde-
fined. With the destination operand is a memory location, the low-order 16 bits of register CR0
are written to memory as a 16-bit quantity, regardless of the operand size.

The SMSW instruction is only useful in operating-system software; however, it is not a privi-
leged instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor; programs and proce-
dures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should use
the MOV (control registers) instruction to load the machine status word.

Operation

DEST ← CR0[15:0]; (* MachineStatusWord *);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F 01 /4 SMSW r/m16 Store machine status word to r/m16

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16;
high-order 16 bits of r32 are undefined

11-368

INSTRUCTION SET REFERENCE

SMSW—Store Ma chine Status Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-369

INSTRUCTION SET REFERENCE

STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F9 STC Set CF flag

11-370

INSTRUCTION SET REFERENCE

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF ← 1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag

11-371

INSTRUCTION SET REFERENCE

STI—Set Interrupt Flag

Description

Sets the interrupt flag (IF) in the EFLAGS register. After the IF flag is set, the processor begins
responding to external maskable interrupts after the next instruction is executed. If the STI
instruction is followed by a CLI instruction (which clears the IF flag) the effect of the STI
instruction is negated.

The IF flag and the STI and CLI instruction have no affect on the generation of exceptions and
NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running
program or procedure (top of the table).

Notes
X Don't care
N Action in Column 1 not taken
Y Action in Column 1 taken

Operation

IF PE=0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM=0 (* Executing in protected mode*)
THEN

IF IOPL = 3
THEN

IF ← 1;
ELSE

IF CPL ≤ IOPL

Opcode Instruction Description

FB STI Set interrupt flag; interrupts enabled at the end of the next
instruction

PE = 0 1 1 1

VM = X 0 0 1

CPL X ≤ IOPL > IOPL =3

IOPL X X X =3

IF ← 1 Y Y N Y

#GP(0) N N Y N

11-372

INSTRUCTION SET REFERENCE

STI—Set Interrupt Flag (continued)

THEN
IF ← 1;

 ELSE
#GP(0);

FI;
FI;

ELSE (* Executing in Virtual-8086 mode *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

Flags Affected

The IF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

11-373

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String Data

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the
destination operand. The destination operand is a memory location at the address ES:EDI.
(When the operand-size attribute is 16, the DI register is used as the source-index register.) The
ES segment cannot be overridden with a segment override prefix.

The STOSB, STOSW, and STOSD mnemonics are synonyms of the byte, word, and doubleword
versions of the STOS instructions. They are simpler to use, but provide no type or segment
checking. (For the STOS instruction, “ES:EDI” must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the AL, AX, or EAX register to the memory
location, the EDI register is incremented or decremented automatically according to the setting
of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is incremented; if
the DF flag is 1, the EDI register is decremented.) The EDI register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations.

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions are
used within a LOOP construct, because data needs to be moved into the AL, AX, or EAX
register before it can be stored. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following
String Operation” on page 11-333 for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (E)DI ← 1;
ELSE (E)DI ← –1;

FI;
ELSE IF (word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN DI ← 2;

Opcode Instruction Description

AA STOS ES:(E)DI Store AL at address ES:(E)DI

AB STOS ES:DI Store AX at address ES:DI

AB STOS ES:EDI Store EAX at address ES:EDI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:DI

AB STOSD Store EAX at address ES:EDI

11-374

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String Data (continued)

ELSE DI ← –2;
FI;

ELSE (* doubleword store *)
DEST ← EAX;

THEN IF DF = 0
THEN EDI ← 4;
ELSE EDI ← –4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-375

INSTRUCTION SET REFERENCE

STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand. The destina-
tion operand can be a general-purpose register or a memory location. The segment selector
stored with this instruction points to the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared to 0s. With the desti-
nation operand is a memory location, the segment selector is written to memory as a 16-bit
quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed in
protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a nonwritable
segment or if the effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The STR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The STR instruction is not recognized in virtual 8086 mode.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16

11-376

INSTRUCTION SET REFERENCE

SUB—Integer Subtraction

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location. When
an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The SUB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

Operation

DEST ← DEST – SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

11-377

INSTRUCTION SET REFERENCE

SUB—Integer Subtraction (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-378

INSTRUCTION SET REFERENCE

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is
then discarded.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);
IF TEMP = 0

THEN ZF ← 0;
ELSE ZF ← 1;

FI:
PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the result
(see “Operation” above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result

11-379

INSTRUCTION SET REFERENCE

TEST—Logical Compare (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-380

INSTRUCTION SET REFERENCE

UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to explicitly
generate an invalid opcode. The opcode for this instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP instruc-
tion.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all oper-
ating modes).

Opcode Instruction Description

0F 0B UD2 Raise invalid opcode exception

11-381

INSTRUCTION SET REFERENCE

VERR, VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is readable (VERR)
or writable (VERW) from the current privilege level (CPL). The source operand is a 16-bit
register or a memory location that contains the segment selector for the segment to be verified.
If the segment is accessible and readable (VERR) or writable (VERW), the ZF flag is set; other-
wise, the ZF flag is cleared. Code segments are never verified as writable. This check cannot be
performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not null.

• The selector must denote a descriptor within the bounds of the descriptor table (GDT or
LDT).

• The selector must denote the descriptor of a code or data segment (not that of a system
segment or gate).

• For the VERR instruction, the segment must be readable; the VERW instruction, the
segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be greater than
or equal to (have less or the same privilege as) both the CPL and the segment selector's
RPL.

The validation performed is the same as if the segment were loaded into the DS, ES, FS, or GS
register, and the indicated access (read or write) were performed. The selector's value cannot
result in a protection exception, enabling the software to anticipate possible segment access
problems.

Operation

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit))
THEN

ZF ← 0
Read segment descriptor;
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *)

OR (SegmentDescriptor(Type) ≠ conforming code segment)
AND (CPL > DPL) OR (RPL > DPL)

THEN
ZF ← 0

Opcode Instruction Description

0F 00 /4 VERR r/m16 Set ZF=1 if segment specified with r/m16 can be read

0F 00 /5 VERW r/m16 Set ZF=1 if segment specified with r/m16 can be written

11-382

INSTRUCTION SET REFERENCE

VERR, VERW—Verify a Segment for Reading or Writing (continued)

ELSE
IF ((Instruction = VERR) AND (segment = readable))

OR ((Instruction = VERW) AND (segment = writable))
THEN

ZF ← 1;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW);
otherwise, it is cleared to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal addressing of the
source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real address
mode.

Virtual 8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual 8086
mode.

11-383

INSTRUCTION SET REFERENCE

WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending unmasked floating-point exceptions
before proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a
WAIT instruction after a floating-point instruction insures that any unmasked floating-point
exceptions the instruction may raise are handled before the processor can modify the instruc-
tion’s results. See “Floating-Point Exception Synchronization” on page 7-51 for more informa-
tion on using the WAIT/FWAIT instruction.

Operation
CheckPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM MP and TS in CR0 is set.

Real Address Mode Exceptions

#NM MP and TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.

11-384

INSTRUCTION SET REFERENCE

WBINVD—Write-Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory, invali-
dates (flushes) the internal caches, and issues a special-function bus cycle that directs external
caches to also write back modified data.

After executing this instruction, the processor does not wait for the external caches to complete
their write-back and flushing operations before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache write-back and flush signals.

The WDINVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also a serializing instruction (see “Serializing Instructions” in Chapter 7, Multiple Processor
Management, of the Pentium Pro Family Developer’s Manual, Volume 3).

In situations where cache coherency with main memory is not a concern, software can use the
INVD instruction.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The WBINVD instruction cannot be executed at the virtual 8086 mode.

Opcode Instruction Description

0F 09 WBINVD Write-back and flush Internal caches; initiate writing-back
and flushing of external caches.

11-385

INSTRUCTION SET REFERENCE

WBINVD—Write-Back and Invalidate Cache (continued)

Intel Architecture Compatibility

The WDINVD instruction implementation-dependent; its function may be implemented
differently on future Intel Architecture processors. The instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

11-386

INSTRUCTION SET REFERENCE

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) speci-
fied in the ECX register. The high-order 32 bits are copied from EDX and the low-order 32 bits
are copied from EAX. Always set undefined or reserved bits in an MSR to the values previously
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated, including
the global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3, Protected-Mode
Memory Management, of the Pentium Pro Family Developer’s Manual, Volume 3).

The MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Appendix D in the Pentium Pro Family Developer’s Manual, Volume 3
lists all the MSRs that can be written to with this instruction and their addresses.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7,
Multiple Processor Management, of the Pentium Pro Family Developer’s Manual, Volume 3).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR address.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX

11-387

INSTRUCTION SET REFERENCE

WRMSR—Write to Model Specific Register (continued)

Virtual 8086 Mode Exceptions

#GP(0) The WRMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi-
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD.

11-388

INSTRUCTION SET REFERENCE

XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source operand),
then loads the sum of the two values into the destination operand. The destination operand can
be a register or a memory location; the source operand is a register.

This instruction can be used with a LOCK prefix.

Operation

TEMP ← SRC + DEST
SRC ← DEST
DEST ← TEMP

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result stored in the destination
operand.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

0F C0/r XADD r/m8,r8 Exchange r8 and r/m8; load sum into r/m8.

0F C1/r XADD r/m16,r16 Exchange r16 and r/m16; load sum into r/m16.

0F C1/r XADD r/m32,r32 Exchange r32 and r/m32; load sum into r/m32.

11-389

INSTRUCTION SET REFERENCE

XADD—Exchange and Add (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

Intel Architecture processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that runs on
earlier processors.

11-390

INSTRUCTION SET REFERENCE

XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands
can be two general-purpose registers or a register and a memory location. When the operands
are two registers, one of the registers must be the EAX or AX register. If a memory operand is
referenced, the LOCK# signal is automatically asserted for the duration of the exchange opera-
tion, regardless of the presence or absence of the LOCK prefix or of the value of the IOPL.

This instruction is useful for implementing semaphores or similar data structures for process
synchronization. (See Chapter 5, Processor Management and Initialization, in the Pentium Pro
Family Developer’s Manual, Volume 3 for more information on bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

Operation

TEMP ← DEST
DEST ← SRC
SRC ← TEMP

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If either operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange r16 with AX

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange r32 with EAX

86 /r XCHG r/m8,r8 Exchange byte register with EA byte

86 /r XCHG r8,r/m8 Exchange byte register with EA byte

87 /r XCHG r/m16,r16 Exchange r16 with EA word

87 /r XCHG r16,r/m16 Exchange r16 with EA word

87 /r XCHG r/m32,r32 Exchange r32 with EA doubleword

87 /r XCHG r32,r/m32 Exchange r32 with EA doubleword

11-391

INSTRUCTION SET REFERENCE

XCHG—Exchange Register/Memory with Register (continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-392

INSTRUCTION SET REFERENCE

XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index,
then copies the contents of the table entry back into the AL register. The index in the AL register
is treated as unsigned integer. The XLAT and XLATB instructions get the base address of the
table in memory from the DS:EBX registers (or the DS:BX registers when the address-size
attribute of 16 bits.) The XLAT instruction allows a different segment register to be specified
with a segment override. When assembled, the XLAT and XLATB instructions produce the
same machine code.

Operation

IF AddressSize = 16
THEN

AL ← (DS:BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

AL ← (DS:EBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL]

D7 XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]

11-393

INSTRUCTION SET REFERENCE

XLAT/XLATB—Table Look-up Translation (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-394

INSTRUCTION SET REFERENCE

XOR—Logical Exclusive OR

Description

Performs a bitwise exclusive-OR (XOR) operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8

11-395

INSTRUCTION SET REFERENCE

XOR—Logical Exclusive OR (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

A-1

APPENDIX A
EFLAGS CROSS-REFERENCE

The cross-reference in Table A-1 summarizes how the flags in the processor’s EFLAGS register
are affected by each instruction. For detailed information on how flags are affected, see Chapter
11, Instruction Set Reference. The following codes describe the how the flags are affected:

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-1. EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — — M

A-2

EFLAGS CROSS-REFERENCE

Instruction OF SF ZF AF PF CF TF IF DF NT RF

CALL

CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP,
FUCOMI, FUCOMIP

M M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

INTO T 0 0

INVD

INVLPG

Table A-1. EFLAGS Cross-Reference(continued)

A-3

EFLAGS CROSS-REFERENCE

Instruction OF SF ZF AF PF CF TF IF DF NT RF

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

Table A-1. EFLAGS Cross-Reference(continued)

A-4

EFLAGS CROSS-REFERENCE

Instruction OF SF ZF AF PF CF TF IF DF NT RF

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT

XOR 0 M M — M 0

Table A-1. EFLAGS Cross-Reference(continued)

B-1

APPENDIX B
EFLAGS CONDITION CODES

Table B-1 gives all the condition codes that can be tested for by the CMOVcc, FCMOVcc, Jcc
and SETcc instructions. The condition codes refer to the setting of one or more status flags (CF,
OF, SF, ZF, and PF) in the EFLAGS register. The “Mnemonic” column gives the suffix (cc) add-
ed to the instruction to specific the test condition. The “Condition Tested For” column describes
the condition specified in the “Status Flag Setting” column. The “Instruction Subcode” column
gives the opcode suffix added to the main opcode to specify a test condition.

Table B-1. EFLAGS Condition Codes

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1

NP
PO

No parity
Parity odd

1011 PF = 0

Mnemonic Meaning
Instruction
Subcode Condition Tested

L
NGE

Less
Neither greater nor equal

1100 (SF xOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF xOR OF) = 0

B-2

EFLAGS CONDITION CODES

Many of the test conditions are described in two different ways. For example LE (less or equal)
and NG (not greater) describe the same test condition. Alternate mnemonics are provided to
make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the relation between
two unsigned integer values. The terms “greater” and “less” are associated with the SF and OF
flags and refer to the relation between two signed integer values.

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0

Table B-1. EFLAGS Condition Codes (continued)

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

C-1

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

Table C-1 lists the floating-point instruction mnemonics in alphabetical order. For each
mnemonic, it summarizes the exceptions that the instruction may cause. See “Floating-Point
Exception Conditions” on page 7-44 for a detailed discussion of the floating-point exceptions.
The following codes indicate the floating-point exceptions:

#IS Invalid-operation exception for stack underflow or stack overflow.

#IA Invalid-operation exception for invalid arithmetic operands and
unsupported formats.

#D Denormal-operand exception.

#Z Divide-by-zero exception.

#O Numeric-overflow exception.

#U Numeric-underflow exception.

#P Inexact-result (precision) exception.

Table C-1. Floating-Point Exceptions Summary

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 2X–1 Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add real Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional move Y

FCOM, FCOMP, FCOMPP Compare real Y Y Y

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

Compare real and set EFLAGS Y Y

FCOS Cosine Y Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide real Y Y Y Y Y Y Y

FFREE Free register

C-2

FLOATING-POINT EXCEPTIONS SUMMARY

Mnemonic Instruction #IS #IA #D #Z #O #U #P

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y

FLD extended or stack Load real Y

FLD single or double Load real Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply real Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

Table C-1. Floating-Point Exceptions Summary(continued)

C-3

FLOATING-POINT EXCEPTIONS SUMMARY

Mnemonic Instruction #IS #IA #D #Z #O #U #P

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store real Y

FST(P) single or double Store real Y Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract real Y Y Y Y Y Y

FTST Test Y Y Y

FUCOM(P)(P) Unordered compare real Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Y ⋅ log2X Y Y Y Y Y Y Y

FYL2XP1 Y ⋅ log2(X + 1) Y Y Y Y Y

Table C-1. Floating-Point Exceptions Summary(continued)

Index-1

INDEX

Symbols
16-bit

address size, 3-4
operand size, 3-4

32-bit
address size, 3-4
operand size, 3-4

8086/8088 processor, 10-1, 10-5
8087 math coprocessor, 10-6

A
AAA instruction, 6-21, 11-15
AAD instruction, 6-21, 11-16
AAM instruction, 6-21, 11-17
AAS instruction, 6-21, 11-18
AC (alignment check) flag, EFLAGS register, 3-12,

10-5
Access rights, segment descriptor, 4-7, 4-11,

11-249
ADC instruction, 6-19, 11-19, 11-269
ADD instruction, 6-19, 11-15, 11-19, 11-21, 11-82,

11-269
Address size attribute

code segment, 3-13
description of, 3-13
of stack, 4-3
override prefix, 11-2

Address size override prefix, 11-2
Address sizes, 3-4
Addressing modes

assembler, 5-9
base, 5-7, 5-8
base plus displacement, 5-9
base plus index plus displacement, 5-9
base plus index time scale plus displacement,

5-9
displacement, 5-7, 5-8
effective address, 5-8
immediate operands, 5-5
index, 5-8
index times scale plus displacement, 5-9
memory operands, 5-6
register operands, 5-5
scale factor, 5-8
specifying a segment selector, 5-6
specifying an offset, 5-7

Addressing, segments, 1-6
Advanced programmable interrupt controller (see

APIC)
AF (adjust) flag, EFLAGS register, 3-10
AH register, 3-6
Alignment

exception, 10-12

of words, doublewords, and quadwords, 5-1
Alignment check exception (#AC), 10-12
AND instruction, 6-22, 11-23, 11-269
APIC flag, CPUID instruction, 11-76
APIC, presence of, 9-1, 11-76
Arctangent, FPU operation, 7-35, 11-147
Arithmetic instructions, FPU, 7-41
ARPL instruction, 11-25
Assembler, addressing modes, 5-9
AX register, 3-6

B
B (default size) flag, segment descriptor, 3-13, 4-2,

4-3, 11-308
Base (operand addressing), 5-7, 5-8, 5-9, 11-3
Basic execution environment, 3-2
B-bit, FPU status word, 7-13
BCD, 5-4
BCD integers, 5-4

FPU encoding, 7-27
packed, 5-4, 6-21, 11-82, 11-83, 11-98, 11-100
relationship to status flags, 3-11
unpacked, 5-4, 6-21, 11-15, 11-16, 11-17,

11-18
BH register, 3-6
Bias value

numeric overflow, 7-48
numeric underflow, 7-49

Biased exponent, 7-4
Binary numbers, 1-6
Binary-coded decimal (see BCD)
Bit fields, 5-4
Bit order, 1-4
BOUND instruction, 4-14, 6-32, 6-36, 11-27
BOUND range exceeded exception (#BR), 4-14,

11-27
BP register, 3-6
Branch prediction, 2-6
Branching, on FPU condition codes, 7-13, 7-35
BSF instruction, 6-27, 11-29
BSR instruction, 6-27, 11-31
BSWAP instruction, 6-15, 10-3, 11-33
BT instruction, 3-10, 6-26, 11-34
BTC instruction, 3-10, 6-26, 11-36, 11-269
BTR instruction, 3-10, 6-26, 11-38, 11-269
BTS instruction, 3-10, 6-26, 11-40, 11-269
Bus interface unit, 2-9
BX register, 3-6
Byte, 5-1
Byte order, 1-4

INDEX

Index-2

C
C1 flag, FPU status word, 7-12, 7-45, 7-48, 7-50,

10-7, 10-17
C2 flag, FPU status word, 7-13, 10-8
Caches, invalidating (flushing), 11-227, 11-384
Caching, I/O ports, 8-6
Call gate, 4-7, 11-244
CALL instruction, 3-12, 4-4, 4-7, 6-28, 6-36, 11-42
Calls (see Procedure calls)
CBW instruction, 6-18, 11-52
CDQ instruction, 6-19, 11-80
CF (carry) flag, EFLAGS register, 3-10, 11-19,

11-21, 11-34, 11-36, 11-38, 11-40,
11-54, 11-59, 11-84, 11-206, 11-211,
11-294, 11-325, 11-349, 11-360,
11-362, 11-369, 11-376

CH register, 3-6
Classify floating-point value, FPU operation,

11-192
CLC instruction, 3-11, 6-34, 11-54
CLD instruction, 3-11, 6-34, 11-55
CLI instruction, 6-35, 8-4, 11-56
CLTS instruction, 11-58
CMC instruction, 3-11, 6-34, 11-59
CMOV flag, CPUID instruction, 11-76
CMOVcc instructions, 2-2, 6-1, 6-13, 10-3, 11-60,

11-76
CMP instruction, 6-20, 11-64
CMPS instruction, 3-11, 6-32, 11-66, 11-333
CMPSB instruction, 11-66
CMPSD instruction, 11-66
CMPSW instruction, 11-66
CMPXCHG instruction, 6-15, 10-3, 11-69, 11-269
CMPXCHG8B instruction, 6-15, 9-1, 10-3, 11-71
Code segment, 3-7
Compare

compare and exchange, 6-15
integers, 6-20
real numbers, FPU, 7-34
strings, 6-32

Compatibility
Intel Architecture, 10-1
software, 1-4

Condition code flags, EFLAGS register, 11-60
Condition code flags, FPU status word

branching on, 7-13
compatibility information, 10-7
conditional moves on, 7-13
description of, 7-11
flags affected by instructions, 11-13
interpretation of, 7-12
setting, 11-186, 11-188, 11-192
use of, 7-33

Conditional jump, 11-237
Conditional moves, on FPU condition codes, 7-13
Conforming code segment, 11-244, 11-249
Constants (floating point)

descriptions of, 7-31

loading, 11-137
Control registers, moving values to and from,

11-285
Coprocessor segment overrun exception, 10-13
Cosine, FPU operation, 7-35, 11-114, 11-167
CPL, 11-56, 11-381
CPUID instruction, 2-2, 6-37, 9-1, 9-2, 10-2, 10-3,

11-73
CR0 control register, 10-6, 11-267, 11-367
CR4 control register, 10-2
CS register, 3-7, 4-8, 10-11, 11-43, 11-216,

11-230, 11-241, 11-281, 11-308
CS segment override prefix, 11-2
CTI instruction, 6-34
Current privilege level (see CPL)
Current stack, 4-2, 4-3
CWD instruction, 6-19, 11-80
CWDE instruction, 6-18, 11-52
CX register, 3-6
CX8 flag, CPUID instruction, 11-76

D
DAA instruction, 6-21, 11-82
DAS instruction, 6-21, 11-83
Data pointer, FPU, 7-19
Data segment, 3-8
Data types

alignment of words, doublewords, and quad-
words, 5-1

BCD integers, 5-4, 6-21
bit fields, 5-4
FPU BCD decimal, 7-27
FPU integer, 7-25
FPU real number, 7-23
fundamental data types, 5-1
integers, 5-2, 6-19, 6-20
pointers, 5-4
strings, 5-4
unsigned integers, 5-4, 6-19, 6-20

DE (debugging extensions) flag, CPUID instruction,
11-75

DE (denormal operand exception) flag, FPU status
word, 7-13, 7-47

Debug registers, moving value to and from, 11-287
DEC instruction, 6-19, 11-84, 11-269
Decimal integers, FPU

description of, 7-27
encodings, 7-27

Denormal number (see Denormalized finite
number)

Denormal operand exception (#D), 7-47, 10-10
Denormalization process, 7-6
Denormalized finite number, 7-5, 7-23, 11-192
Denormalized operand, 10-14
Device not available exception (#NM), 10-12, 10-13

Index-3

INDEX

DF (direction) flag, EFLAGS register, 3-11, 11-55,
11-66, 11-213, 11-271, 11-289, 11-305,
11-351, 11-370

DH register, 3-6
DI register, 3-6
Dispatch/execute unit, 2-10
Displacement (operand addressing), 5-7, 5-8, 5-9,

11-3
DIV instruction, 6-20, 11-86
Divide error exception (#DE), 11-86
Division-by-zero exception (#Z), 7-45
Double-extended-precision, IEEE floating-point

format, 7-23
Double-precision, IEEE floating-point format, 7-23
Double-real floating-point format, 7-23
Doubleword, 5-1
DS register, 3-7, 3-8, 11-66, 11-252, 11-271,

11-305
DS segment override prefix, 11-2
DX register, 3-6
Dynamic data flow analysis, 2-6
Dynamic execution, 2-6

E
EAX register, 3-5
EBP register, 3-5, 4-3, 4-4, 4-6
EBX register, 3-5
ECX register, 3-5
EDI register, 3-5, 11-289, 11-351, 11-370, 11-373
EDX register, 3-5
Effective address, 5-8, 11-255
EFLAGS Condition Codes, B-1
EFLAGS register, 3-9

condition codes, 11-61, 11-106, 11-111
flags affected by instructions, 11-12
loading, 11-248
new flags, 10-4
popping, 11-314
popping on return from interrupt, 11-230
pushing, 11-322
pushing on interrupts, 11-216
restoring from procedure stack, 4-6
saving, 11-344
saving on a procedure call, 4-6
status flags, 7-14, 7-34, 11-64, 11-238, 11-353,

11-378
using flags to distinguish between 32-bit Intel

Architecture processors, 10-5
EIP register, 3-7, 3-12, 4-8, 10-11, 11-42, 11-216,

11-230, 11-241
EM (emulation) flag, CR0 register, 10-13
ENTER instruction, 4-15, 6-34, 11-89
Error signals, 10-11, 10-12
ES (exception summary) flag, FPU status word,

7-13, 7-51
ES register, 3-7, 3-8, 11-66, 11-213, 11-252,

11-305, 11-351, 11-373

ES segment override prefix, 11-2
ESC instructions, FPU, 7-29
ESI register, 3-5, 11-271, 11-289, 11-305, 11-370
ESP register, 3-5, 4-1, 4-3, 4-4, 11-42, 11-308,

11-317
ET (extension type) flag, CR0 register, 10-7
Exception flags, FPU status word, 7-13
Exception handler, 4-10
Exception priority, FPU exceptions, 7-50, 10-11
Exception-flag masks, FPU control word, 7-15
Exceptions

alignment check, 10-12
BOUND range exceeded (#BR), 4-14, 11-27
coprocessor segment overrun, 10-13
description of, 4-9
device not available, 10-13
floating-point error, 10-13
general protection, 10-13
implicit call to handler, 4-1
in real-address mode, 4-14
invalid-opcode, 10-4
list of, 4-11, 11-13
notation, 1-6
overflow exception (#OF), 4-14, 11-216
returning from, 11-230
segment not present, 10-12
vector, 4-10

Exponent
extracting from floating-point number, 11-196
floating-point number, 7-2

Exponential, FPU operation, 7-37
Extended real

encodings, unsupported, 7-28
floating-point format, 7-23

Extract exponent and significand, FPU operation,
11-196

F
F2XM1 instruction, 7-37, 10-15, 11-92, 11-196
FABS instruction, 7-32, 11-94
FADD instruction, 7-32, 11-95
FADDP instruction, 7-32, 11-95
Far call

CALL instruction, 11-42
description of, 4-4
operation, 4-5

Far pointer
16-bit addressing, 3-4
32-bit addressing, 3-4
description of, 3-3, 5-4
loading, 11-252

Far return
RET instruction, 11-336

FBLD instruction, 11-98
FBSTP instruction, 7-30, 11-100
FCHS instruction, 7-32, 11-103
FCLEX/FNCLEX instructions, 7-13, 11-105

INDEX

Index-4

FCMOVcc instructions, 2-2, 6-1, 7-14, 7-31, 10-3,
10-13, 11-76, 11-106

FCOM instruction, 7-14, 7-33, 11-108
FCOMI instruction, 2-2, 6-1, 7-14, 7-33, 10-3,

10-13, 11-76, 11-111
FCOMIP instruction, 2-2, 6-1, 7-14, 7-33, 10-3,

10-13, 11-111
FCOMP instruction, 7-14, 7-33, 11-108
FCOMPP instruction, 7-14, 7-33, 11-108
FCOS instruction, 7-13, 7-35, 10-15, 11-114
FDECSTP instruction, 11-116
FDISI instruction (obsolete), 10-17
FDIV instruction, 7-32, 10-12, 10-14, 11-117
FDIVP instruction, 7-32, 11-117
FDIVR instruction, 7-32, 11-121
FDIVRP instruction, 7-32, 11-121
Feature determination, of processor, 9-1, 10-2
Feature information, processor, 10-2, 11-73
FENI instruction (obsolete), 10-17
Fetch/decode unit, 2-9
FFREE instruction, 11-125
FIADD instruction, 7-32, 11-95
FICOM instruction, 7-14, 7-33, 11-126
FICOMP instruction, 7-14, 7-33, 11-126
FIDIV instruction, 7-32, 11-117
FIDIVR instruction, 7-32, 11-121
FILD instruction, 7-30, 11-128
FIMUL instruction, 7-32, 11-143
FINCSTP instruction, 11-130
FINIT/FNINIT instructions, 7-13, 7-15, 7-18, 7-38,

10-7, 11-131, 11-160
FIST instruction, 7-30, 11-132
FISTP instruction, 7-30, 11-132
FISUB instruction, 7-32, 11-180
FISUBR instruction, 7-32, 11-183
Flat memory model, 3-3, 3-7
FLD instruction, 7-30, 10-15, 11-135
FLD1 instruction, 7-31, 11-137
FLDCW instruction, 7-15, 7-38, 11-139
FLDENV instruction, 7-13, 7-18, 7-22, 7-38, 10-12,

10-13, 11-141
FLDL2E instruction, 7-31, 10-16, 11-137
FLDL2T instruction, 7-31, 10-16, 11-137
FLDLG2 instruction, 7-31, 10-16, 11-137
FLDLN2 instruction, 7-31, 10-16, 11-137
FLDPI instruction, 7-31, 10-16, 11-137
FLDSW instruction, 7-38
FLDZ instruction, 7-31, 11-137
Floating-point data types, 7-22
Floating-point error exception (#MF), 10-13
Floating-point exceptions

automatic handling, 7-41
denormal operand exception, 7-47, 10-10
division-by-zero, 7-45
exception conditions, 7-44
exception priority, 7-50
handling, 7-40
inexact-result (precision), 7-49

invalid arithmetic operand, 7-44, 7-45
invalid operation, 10-16
list of, including mnemonics, 11-14
numeric overflow, 7-47, 10-10
numeric underflow, 7-48, 10-11
saved CS and EIP values, 10-11
software handling, 7-41
stack overflow, 7-12, 7-44
stack underflow, 7-12, 7-44
summary of, 7-40
synchronization, 7-51

Floating-point format
biased exponent, 7-4
description of, 7-22
exponent, 7-2
fraction, 7-2
real number system, 7-1
real numbers, 7-23
sign, 7-2
significand, 7-2

Flushing
caches, 11-227, 11-384
TLB entry, 11-229

FMUL instruction, 7-32, 11-143
FMULP instruction, 7-32, 11-143
FNOP instruction, 7-38, 11-146
FNSTENV instruction, 11-141
FPATAN instruction, 7-35, 7-36, 10-15, 11-147
FPREM instruction, 7-13, 7-32, 7-36, 10-7, 10-12,

10-14, 11-149
FPREM1 instruction, 7-13, 7-32, 7-36, 10-7, 10-14,

11-152
FPTAN instruction, 7-13, 10-8, 10-14, 11-155
FPU

architecture, 7-7
checking for pending FPU exceptions, 11-383
compatibility with Intel Architecture FPUs and

math coprocessors, 7-1, 10-6
constants, 11-137
error signals, 10-11, 10-12
existence of, 11-75
floating-point format, 7-1, 7-2
IEEE standards, 7-1
initialization, 11-131
instruction synchronization, 10-18
presence of, 9-1
transcendental instruction accuracy, 7-37

FPU control word
compatibility, Intel Architecture processors,

10-8
description of, 7-15
exception-flag masks, 7-15
loading, 11-139, 11-141
PC field, 7-15
RC field, 7-16, 11-132, 11-137, 11-171
restoring, 11-158
saving, 11-160, 11-176
storing, 11-174

Index-5

INDEX

FPU data pointer, 7-19, 11-141, 11-158, 11-160,
11-176

FPU data registers, 7-8
FPU flag, CPUID instruction, 11-75
FPU instruction pointer, 7-19, 11-141, 11-158,

11-160, 11-176
FPU instructions

arithmetic vs. non-arithmetic instructions, 7-41
instruction set, 7-28
operands, 7-29
overview, 7-28
unsupported, 7-39

FPU integer
description of, 7-25
encodings, 7-26

FPU last opcode, 7-19, 11-141, 11-158, 11-160,
11-176

FPU register stack
description of, 7-8
parameter passing, 7-10

FPU state
image, 7-20, 7-21
saving, 7-20

FPU status word
condition code flags, 7-11, 10-7, 11-108,

11-126, 11-186, 11-188, 11-192
DE flag, 7-47
description of, 7-11
exception flags, 7-13
FPU flags affected by instructions, 11-13
loading, 11-141
OE flag, 7-47
PE flag, 7-12
restoring, 11-158
saving, 11-160, 11-176, 11-178
TOP field, 7-9, 11-130

FPU tag word, 7-18, 10-8, 11-141, 11-158, 11-160,
11-176

Fraction, floating-point number, 7-2
FRNDINT instruction, 7-32, 11-157
FRSTOR instruction, 7-13, 7-18, 7-22, 7-38, 10-12,

10-13, 11-158
FS register, 3-7, 3-8, 11-252
FS segment override prefix, 11-2
FSAVE/FNSAVE instructions, 7-11, 7-13, 7-18,

7-20, 7-38, 10-12, 10-17, 11-158,
11-160

FSCALE instruction, 7-37, 10-14, 11-163
FSIN instruction, 7-13, 7-35, 10-15, 11-165
FSINCOS instruction, 7-13, 7-36, 10-15, 11-167
FSQRT instruction, 7-32, 10-12, 10-14, 11-169
FST instruction, 7-30, 11-171
FSTCW/FNSTCW instructions, 7-15, 7-38, 11-174
FSTENV/FNSTENV instructions, 7-11, 7-18, 7-20,

7-38, 10-17, 11-176
FSTP instruction, 7-30, 11-171
FSTSW/FNSTSW instructions, 7-11, 7-38, 11-178
FSUB instruction, 7-32, 11-180

FSUBP instruction, 7-32, 11-180
FSUBR instruction, 7-32, 11-183
FSUBRP instruction, 7-32, 11-183
FTAN instruction, 10-8
FTST instruction, 7-14, 7-33, 11-186
FUCOM instruction, 7-33, 10-14, 11-188
FUCOMI instruction, 2-2, 6-1, 7-14, 7-33, 10-3,

10-13, 11-111
FUCOMIP instruction, 2-2, 6-1, 7-14, 7-33, 10-3,

10-13, 11-111
FUCOMP instruction, 7-33, 10-14, 11-188
FUCOMPP instruction, 7-14, 7-33, 10-14, 11-188
FXAM instruction, 7-12, 7-33, 10-15, 10-16, 11-192
FXCH instruction, 7-31, 11-194
FXTRACT instruction, 7-32, 10-10, 10-15, 10-16,

11-163, 11-196
FYL2X instruction, 7-37, 11-198
FYL2XP1 instruction, 7-37, 11-200

G
GDT (global descriptor table), 11-261, 11-264
GDTR (global descriptor table register), 11-261,

11-356
General protection exception (#GP), 10-13
General-purpose registers, 3-5

moving value to and from, 11-281
parameter passing, 4-5
popping all, 11-312
pushing all, 11-320

GS register, 3-7, 3-8, 11-252
GS segment override prefix, 11-2

H
Hexadecimal numbers, 1-6
HLT instruction, 11-202

I
I/O address space, 8-2
I/O instructions

overview of, 6-33, 8-2
serialization, 8-6

I/O map base, 8-5
I/O permission bit map, 8-5
I/O ports, 8-5

addressing, 8-1
caching and paging, 8-6
defined, 8-1
hardware, 8-1
memory-mapped I/O, 8-2
ordering, 8-6
protected mode I/O, 8-4

I/O privilege level (see IOPL)
I/O sensitive instructions, 8-4
ID (identification) flag, EFLAGS register, 3-12, 10-5
ID flag, EFLAGS register, 10-5
IDIV instruction, 6-20, 11-203

INDEX

Index-6

IDT (interrupt descriptor table), 11-216, 11-261
IDTR (interrupt descriptor table register), 11-261,

11-356
IE (invalid operation exception) flag, FPU status

word, 7-13, 7-45, 10-8
IEEE 754 and 854 standards for floating-point

arithmetic, 7-1, 10-8, 10-9
IF (interrupt enable) flag, EFLAGS register, 3-11,

4-12, 8-4, 11-56, 11-371
Immediate operands, 5-5, 11-3
IMUL instruction, 6-20, 11-206
IN instruction, 6-33, 8-3, 8-4, 11-209
INC instruction, 6-19, 11-211, 11-269
Indefinite

description of, 7-7
integer, 7-26
packed BCD decimal, 7-28
real, 7-25

Index (operand addressing), 5-8, 5-9, 11-3
Inexact result, FPU, 7-17
Inexact-result (precision) exception (#P), 7-49
Infinity control flag, FPU control word, 7-18
Infinity, floating-point format, 7-6
INIT pin, 3-9
Initialization FPU, 11-131
Input/output (see I/O)
INS instruction, 6-33, 8-3, 8-4, 11-213, 11-333
INSB instruction, 11-213
INSD instruction, 11-213
Instruction decoder, 2-9
Instruction format

base field, 11-3
description of, 11-1
description of reference information, 11-7
displacement, 11-3
illustration of, 11-1
immediate, 11-3
index field, 11-3
Mod field, 11-2
ModR/M byte, 11-2
opcode, 11-2
prefixes, 11-1
r/m field, 11-2
reg/opcode field, 11-2
scale field, 11-3
SIB byte, 11-2

Instruction operands, 1-5
Instruction pointer (EIP register), 3-12
Instruction pointer, FPU, 7-19
Instruction pool (reorder buffer), 2-10
Instruction prefixes (see Prefixes)
Instruction reference, nomenclature, 11-7
Instruction set

binary arithmetic instructions, 6-19
bit scan instructions, 6-26
bit test and modify instructions, 6-26
byte-set-on-condition instructions, 6-27
control transfer instructions, 6-27

data movement instructions, 6-12
decimal arithmetic instructions, 6-20
EFLAGS instructions, 6-34
floating-point instructions, 6-8
I/O instructions, 6-33
integer instructions, 6-2
lists of, 6-1
logical instructions, 6-22
new instructions, 10-2
obsolete instructions, 10-4
processor identification instruction, 6-37
reference, 11-1
repeating string operations, 6-33
rotate instructions, 6-25
segment register instructions, 6-36
shift instructions, 6-22
software interrupt instructions, 6-31
string instructions, 11-66, 11-213, 11-271,

11-289, 11-305, 11-373
string operation instructions, 6-32
summary, 6-1
system instructions, 6-11
test instruction, 6-27
type conversion instructions, 6-18

INSW instruction, 11-213
INT instruction, 4-14, 6-36
INT3 instruction, 11-216
Integer, FPU data type

description of, 7-25
indefinite, 7-26
storing, 11-132

Integers, 5-2, 6-19, 6-20
Intel 286 processor, 10-1, 10-6
Intel 8086 processor, 10-6
Intel Architecture

compatibility, 10-1
processors, 10-1

Intel287 math coprocessor, 10-6
Intel386 DX processor, 10-1, 10-6
Intel386 SX processor, 10-1
Intel387 math coprocessor system, 10-6
Intel486 DX processor, 10-1, 10-6
Intel486 SX processor, 10-1, 10-6
Intel487 SX math coprocessor, 10-6
Inter-privilege level call

CALL instruction, 11-42
description of, 4-6
operation, 4-8

Inter-privilege level return
description of, 4-6
operation, 4-8
RET instruction, 11-336

Interrupt gate, 4-11
Interrupt handler, 4-10
Interrupt vector, 4-10

Index-7

INDEX

Interrupts
description of, 4-9
implicit call to an interrupt handler procedure,

4-11
implicit call to an interrupt handler task, 4-13
in real-address mode, 4-14
interrupt vector 4, 11-216
list of, 4-11
maskable, 4-10
returning from, 11-230
software, 11-216
user-defined, 4-10
vector, 4-10

INTn instruction, 6-31, 11-216
INTO instruction, 4-14, 6-32, 6-36, 11-216
Invalid arithmetic operand exception (#IA), FPU

description of, 7-45
masked response to, 7-46

Invalid operation exception, 7-44
Invalid operation exception, FPU, 10-12, 10-16
Invalid-opcode exception (#UD), 10-4, 10-12
INVD instruction, 10-3, 11-227
INVLPG instruction, 10-3, 11-229
IOPL (I/O privilege level) field, EFLAGS register,

3-11, 8-4, 11-56, 11-322, 11-371
IRET instruction, 3-12, 4-13, 4-14, 6-29, 6-36, 8-4,

11-230
IRETD instruction, 11-230

J
J-bit, 7-2
Jcc instructions, 3-11, 3-12, 6-29, 11-237
JMP instruction, 3-12, 6-27, 6-36, 11-241
Jump operation, 11-241

L
L1 (level 1) cache, 2-5, 2-8
L2 (level 2) cache, 2-5, 2-8
LAHF instruction, 3-10, 6-35, 11-248
LAR instruction, 11-249
Last instruction opcode, FPU, 7-19
LDS instruction, 6-36, 11-252
LDT (local descriptor table), 11-264
LDTR (local descriptor table register), 11-264,

11-365
LEA instruction, 6-37, 11-255
LEAVE instruction, 4-15, 4-21, 6-34, 11-257
LES instruction, 6-36, 11-252
LFS instruction, 11-252
LGDT instruction, 11-261
LGS instruction, 6-36, 11-252
LIDT instruction, 11-261
Linear address, 3-3
Linear address space

defined, 3-3
maximum size, 3-3

LLDT instruction, 11-264

LMSW instruction, 11-267
Load effective address operation, 11-255
LOCK prefix, 11-1, 11-69, 11-71, 11-269, 11-388,

11-390
LOCK signal, 6-15
Locking operation, 11-269
LODS instruction, 3-11, 6-32, 11-271, 11-333
LODSB instruction, 11-271
LODSD instruction, 11-271
LODSW instruction, 11-271
Log (base 2), FPU computation, 7-37
Log (base 2), FPU operation, 11-200
Log epsilon, FPU operation, 7-37, 11-198
Logical address, 3-3
LOOP instructions, 6-30, 11-273
LOOPcc instructions, 3-11, 6-30, 11-273
LSL instruction, 11-275
LSS instruction, 6-36, 11-252
LTR instruction, 11-279

M
Machine check architecture, 2-4
Machine check exception, 2-4
Machine status word, CR0 register, 11-267, 11-367
Maskable interrupts, 4-10
Masked responses

to denormal operand exception, 7-47
to division-by-zero exception, 7-46
to FPU stack overflow or underflow exception,

7-45
to inexact-result (precision) exception, 7-50
to invalid arithmetic operation, 7-46
to numeric overflow exception, 7-48
to numeric underflow exception, 7-49

Masks, exception-flags, FPU control word, 7-15
MCA (machine check architecture), CPUID

instruction, 11-76
MCE (machine check exception) flag, CPUID

instruction, 11-76
Memory

order buffer, 2-9
organization, 3-2, 3-3
subsystem, 2-8

Memory interface unit, 2-9
Memory operands, 5-6
Memory-mapped I/O, 8-1, 8-2
MESI (modified, exclusive, shared, invalid) cache

protocol, 2-9
Microarchitecture

detailed description, 2-7
overview, 2-5

Micro-ops, 2-9
Mod field, instruction format, 11-2
Modes, operating, 3-4

INDEX

Index-8

ModR/M byte
16-bit addressing forms of, 11-4
32-bit addressing forms of, 11-5
description of, 11-2
format of, 11-1

MOV instruction, 6-13, 6-36, 11-281
MOV instruction (control registers), 11-285
MOV instruction (debug registers), 11-287
MOVS instruction, 3-11, 6-32, 11-289, 11-333
MOVSB instruction, 11-289
MOVSD instruction, 11-289
MOVSW instruction, 11-289
MOVSX instruction, 6-19, 11-291
MOVZX instruction, 6-19, 11-292
MP (monitor coprocessor) flag, CR0 register, 10-7,

10-13
MSR flag, CPUID instruction, 11-75
MSRs (model specific registers)

existence of, 11-75
overview of, 2-3
reading, 11-328
writing, 11-386

MTRRs (memory type range registers)
flag, CPUID instruction, 11-76
overview of, 2-4
presence of, 9-1

MUL instruction, 6-20, 11-17, 11-294

N
NaN

compatibility, Intel Architecture processors,
10-9

description of, 7-4, 7-7
encoding of, 7-5, 7-25
operating on, 7-39
SNaNs vs. QNaNs, 7-7
testing for, 11-186

NE (numeric error) flag, CR0 register, 7-42, 10-7
Near call

CALL instruction, 11-42
description of, 4-4
operation, 4-4

Near pointer
description of, 5-4

Near return
operation, 4-4
RET instruction, 11-336

Near return operation, 4-5
NEG instruction, 6-20, 11-269, 11-296
Nomenclature, used in instruction reference pages,

11-7
Non-arithmetic instructions, FPU, 7-41
Nonconforming code segment, 11-244
Non-number encodings, FPU, 7-4
Non-waiting instructions, 7-39, 7-41
NOP instruction, 6-38, 11-298
Normalized finite number, 7-3, 7-5

NOT instruction, 6-22, 11-269, 11-299
Notation

bit and byte order, 1-4
exceptions, 1-6
hexadecimal and binary numbers, 1-6
instruction operands, 1-5
reserved bits, 1-4
segmented addressing, 1-6

Notational conventions, 1-4
NT (nested task) flag, EFLAGS register, 3-12,

11-230
Numeric overflow exception (#O), 7-12, 7-47,

10-10
Numeric underflow exception (#U), 7-12, 7-48,

10-11

O
Obsolete instructions, 10-4, 10-17
OE (numeric overflow exception) flag, FPU status

word, 7-13, 7-47
OF (carry) flag, EFLAGS register, 11-206
OF (overflow) flag, EFLAGS register, 3-10, 4-14,

11-19, 11-21, 11-216, 11-294, 11-349,
11-360, 11-362, 11-376

Offset (operand addressing), 5-7
Opcodes

format of, 11-2
undefined, 10-4

Operand
FPU instructions, 7-29
instruction, 1-5

Operand addressing, modes, 5-5
Operand sizes, 3-4
Operand-size attribute

code segment, 3-13
description of, 3-13
override prefix, 11-2

Operand-size override prefix, 11-2
Operating modes, 3-4
OR instruction, 6-22, 11-269, 11-301
Ordering I/O, 8-6
OUT instruction, 6-33, 8-3, 8-4, 11-303
OUTS instruction, 6-33, 8-3, 8-4, 11-305, 11-333
OUTSB instruction, 11-305
OUTSD instruction, 11-305
OUTSW instruction, 11-305
Overflow exception (#OF), 4-14, 11-216
Overflow, FPU exception (see Numeric overflow

exception)
Overflow, FPU stack, 7-44

P
Packed BCD integers, 5-4
Packed decimal indefinite, 7-28
PAE (physical address extension) flag, CPUID

instruction, 11-75

Index-9

INDEX

PAE (physical address extension) flag, CR4
register, 2-3

Pages, split, 10-17
Paging, I/O ports, 8-6
Parameter passing

argument list, 4-6
FPU register stack, 7-10
on procedure stack, 4-5
on the procedure stack, 4-6
through general-purpose registers, 4-5

PC (precision) field, FPU control word, 7-15
PE (inexact result exception) flag, FPU status word,

7-12, 7-13, 7-17, 7-50
PE (protection enable) flag, CR0 register, 11-267
Pentium Pro processor

introduction to, 2-1
microarchitecture, 2-5, 2-7
new features, 2-1
new memory management features, 2-2
new model specific features, 2-3
overview of microarchitecture, 2-1

Pentium processor, 10-1, 10-6
Performance-monitoring counters

overview of, 2-5
reading, 11-330

PF (parity) flag, EFLAGS register, 3-10
PGE (page global enable) flag, CR4 register, 2-3
PGE (page-table-entry global flag), CPUID

instruction, 11-76
Physical address space, 3-2
Physical memory, 3-2
Pi

description of FPU constant, 7-36
loading, 11-137

Pointers, 5-4
POP instruction, 4-1, 4-2, 6-17, 6-36, 11-308
POPA instruction, 4-6, 6-17, 11-312
POPAD instruction, 11-312
POPF instruction, 3-10, 4-6, 6-35, 8-4, 11-314
POPFD instruction, 3-10, 6-35, 11-314
POPFH instruction, 4-6
Prefixes

address size override, 11-2
instruction, description of, 11-1
LOCK, 11-1, 11-269
operand-size override, 11-2
REP/REPE/REPZ/REPNE/REPNZ, 11-333
repeat, 11-1
segment override, 11-2

Privilege levels
description of, 4-7
inter-privilege level calls, 4-6
stack switching, 4-12

Procedure calls
description of, 4-4
far call, 4-4
for block-structured languages, 4-15
inter-privilege level call, 4-8

linking, 4-3
near call, 4-4
overview, 4-1
procedure stack, 4-1
return instruction pointer (EIP register), 4-4
saving procedure state information, 4-6
stack switching, 4-8
to exception handler procedure, 4-11
to exception task, 4-13
to interrupt handler procedure, 4-11
to interrupt task, 4-13
to other privilege levels, 4-6
types of, 4-1

Procedure stack
address-size attribute, 4-3
alignment of stack pointer, 4-2
current stack, 4-2, 4-3
description of, 4-1
EIP register (return instruction pointer), 4-4
maximum size, 4-1
number allowed, 4-2
passing parameters on, 4-6
popping values from, 4-1, 11-308
procedure linking information, 4-3
pushing values on, 4-1, 11-317
return instruction pointer, 4-4
SS register, 4-1
stack pointer, 4-1
stack segment, 4-1
stack-frame base pointer, EBP register, 4-3
switching, 4-8
top of stack, 4-1
width, 4-2

Processor identification
earlier Intel architecture processors, 9-2
using CPUID instruction, 9-1

Processor state information, saving on a procedure
call, 4-6

Protected mode
description of, 3-4
I/O, 8-4

PSE (page size extension) flag, CR4 register, 2-3
PSE (page size extensions) flag, CPUID

instruction, 11-75
Pseudo-denormal number, 7-28
Pseudo-infinity, 7-28, 10-9
Pseudo-NaN, 7-28, 10-9
Pseudo-zero, 10-9
PUSH instruction, 4-1, 4-2, 6-16, 6-36, 10-5,

11-317
PUSHA instruction, 4-6, 6-16, 11-320
PUSHAD instruction, 11-320
PUSHF instruction, 3-10, 4-6, 6-35, 10-6, 11-322
PUSHFD instruction, 3-10, 6-35, 11-322
PUSHFH instruction, 4-6

INDEX

Index-10

Q
QNaN

compatibility, Intel Architecture processors,
10-9

description of, 7-7
operating on, 7-39
rules for generating, 7-40

Quadword, 5-1
Quiet NaN (see QNaN)

R
R/m field, instruction format, 11-2
RC (rounding control) field, FPU control word, 7-16,

11-132, 11-137, 11-171
RCL instruction, 6-26, 11-324
RCR instruction, 6-26, 11-324
RDMSR instruction, 2-2, 9-1, 10-3, 11-75, 11-328,

11-332
RDPMC instruction, 2-2, 6-1, 10-3, 11-330
RDTSC instruction, 9-1, 10-3, 11-75, 11-332
Real numbers

encoding, 7-4, 7-5, 7-25
floating-point format, 7-23
indefinite, 7-25
notation, 7-3
system, 7-1

Real-address mode, 3-4
handling exceptions in, 4-14
handling interrupts in, 4-14

Reg/opcode field, instruction format, 11-2
Register operands, 5-5
Register stack, FPU, 7-8
Registers

EFLAGS register, 3-9
EIP register, 3-12
general-purpose registers, 3-5
MSRs, 2-3
MTRRs, 2-4
segment registers, 3-5, 3-7

Related literature, 1-7
Remainder, FPU operation, 11-149, 11-152
REP/REPE/REPZ/REPNE/REPNZ prefixes, 6-33,

8-3, 11-2, 11-66, 11-213, 11-305,
11-333

Reserved bits, 1-4, 10-1
RESET pin, 3-9
RET instruction, 3-12, 4-4, 6-28, 6-36, 11-336
Retirement unit, 2-11
Return instruction pointer, 4-4
Returns, from procedure calls

exception handler, return from, 4-11
far return, 4-5
interrupt handler, return from, 4-11

Returns, from procedures calls
inter-privilege level return, 4-8
near return, 4-4

RF (resume) flag, EFLAGS register, 3-12

ROL instruction, 6-25, 11-324
ROR instruction, 6-25, 11-324
Rotate operation, 11-324
Rounding

control, RC field of FPU control word, 7-16
modes, FPU, 7-16
results, FPU, 7-17
round to integer, FPU operation, 11-157

RPL field, 11-25
RSM instruction, 10-3, 11-343

S
SAHF instruction, 3-10, 6-35
SAL instruction, 6-22, 11-345, 11-377
SAR instruction, 6-23, 11-345, 11-377
Saving the FPU state, 7-20
SBB instruction, 6-19, 11-269, 11-349
Scale (operand addressing), 5-8, 5-9, 11-3
Scale, FPU operation, 7-37, 11-163
Scaling bias value, 7-48, 7-49
SCAS instruction, 3-11, 6-32, 11-333, 11-351
SCASB instruction, 11-351
SCASD instruction, 11-351
SCASW instruction, 11-351
Segment descriptor

segment limit, 11-275
Segment limit, 11-275
Segment override prefixes, 11-2
Segment registers

description of, 3-5, 3-7
moving values to and from, 11-281

Segment selector
description of, 3-3, 3-7
RPL field, 11-25
specifying, 5-6

Segmented addressing, 1-6
Segmented memory model, 3-3, 3-7
Segments

defined, 3-3
maximum number, 3-3

Serialization of I/O instructions, 8-6
SETcc instructions, 3-11, 6-27, 11-353
SF (sign) flag, EFLAGS register, 3-10, 11-19,

11-21
SF (stack fault) flag, FPU status word, 7-13, 7-45,

10-8
SGDT instruction, 11-356
SHAF instruction, 11-344
SHL instruction, 6-22, 11-345, 11-377
SHLD instruction, 6-25, 11-360
SHR instruction, 6-22, 11-345, 11-377
SHRD instruction, 6-25, 11-362
SI register, 3-6
SIB byte

32-bit addressing forms of, 11-6
description of, 11-2
format of, 11-1

Index-11

INDEX

SIDT instruction, 11-356
Sign, floating-point number, 7-2
Signaling NaN (see SNaN)
Signed infinity, 7-6
Signed zero, 7-4
Significand

extracting from floating-point number, 11-196
of floating-point number, 7-2

Sine, FPU operation, 7-35, 11-165, 11-167
Single-precision, IEEE floating-point format, 7-23
Single-real floating-point format, 7-23
SLDT instruction, 11-365
SMSW instruction, 11-367
SNaN

compatibility, Intel Architecture processors, 10-
9, 10-16

description of, 7-7
operating on, 7-39
typical uses of, 7-39

SP register, 3-6
Speculative execution, 2-7
Split pages, 10-17
Square root, FPU operation, 11-169
SS register, 3-7, 3-9, 4-1, 11-252, 11-282, 11-308
SS segment override prefix, 11-2
ST(0), top-of-stack register, 7-9
Stack (see Procedure stack)
Stack alignment, 4-2
Stack fault, FPU, 7-13, 10-8, 10-15
Stack overflow and underflow exceptions (#IS),

FPU, 7-44
Stack overflow exception, FPU, 7-12, 7-44
Stack pointer (ESP register), 4-1, 11-317
Stack segment, 3-9
Stack switching

on calls to interrupt and exception handlers, 4-
12

on inter-privilege level calls, 4-8
Stack underflow exception, FPU, 7-12, 7-44
Stack-frame base pointer, EBP register, 4-3
Status flags, EFLAGS register, 3-10, 7-14, 7-34,

11-61, 11-64, 11-106, 11-111, 11-238,
11-353, 11-378

STC instruction, 3-11, 6-34, 11-369
STD instruction, 3-11, 6-34, 11-370
STI instruction, 6-34, 6-35, 8-4, 11-371
STOS instruction, 3-11, 6-33, 11-333, 11-373
STOSB instruction, 11-373
STOSD instruction, 11-373
STOSW instruction, 11-373
STR instruction, 11-375
String operations, 11-66, 11-213, 11-271, 11-289,

11-305, 11-373
Strings, 5-4
SUB instruction, 6-19, 11-18, 11-83, 11-269, 11-

376
Superscaler, 2-5
Synchronization, of floating-point exceptions, 7-51

System flags, EFLAGS register, 3-11
System management mode (SSM), 3-4

T
Tangent, FPU operation, 7-35, 11-155
Task gate, 4-14, 11-245
Task register

loading, 11-279
storing, 11-375

Task state segment (see TSS)
Task switch

CALL instruction, 11-42
return from nested task, IRET instruction,

11-230
Tasks

exception handler, 4-13
interrupt handler, 4-13

TEST instruction, 6-27, 11-378
TF (trap) flag, EFLAGS register, 3-11
Time-stamp counter, reading, 11-332
Tiny number, 7-5
TLB entry, invalidating (flushing), 11-229
TOP (stack TOP) field, FPU status word, 7-9
Transcendental instruction accuracy, 7-37, 10-7,

10-17
Trap gate, 4-11
TS (task switched) flag, CR0 register, 10-13, 11-58
TSC (time stamp counter) flag, CPUID instruction,

11-75
TSD flag, CR4 register, 11-332
TSS

floating-point save area, 10-13
I/O map base, 8-5
I/O permission bit map, 8-5
relationship to task register, 11-375
saving state of EFLAGS register, 3-10

U
UD2 instruction, 2-2, 6-1, 6-38, 10-3, 11-380
UE (numeric overflow exception) flag, FPU status

word, 7-13, 7-49
Undefined

format opcodes, 11-186
opcodes, 10-4

Underflow, FPU exception (see Numeric underflow
exception)

Underflow, FPU stack, 7-44
Underflow, numeric, 7-5
Un-normal number, 7-28, 10-9
Unordered values, 11-108, 11-111, 11-186, 11-188
Unsigned integers, 5-4, 6-19, 6-20
Unsupported floating-point formats, 7-28
Unsupported FPU instructions, 7-39

V
Vector (see Interrupt vector)

INDEX

Index-12

VERR instruction, 11-381
Version information, processor, 11-73
VERW instruction, 11-381
VIF (virtual interrupt) flag, EFLAGS register, 3-12
VIF flag, EFLAGS register, 10-5
VIP (virtual interrupt pending) flag, EFLAGS

register, 3-12, 10-5
Virtual 8086 mode

description of, 3-12
memory model, 3-4

VM (virtual 8086 mode) flag, EFLAGS register,
3-12, 11-230

VME (virtual 8086 mode enhancements) flag,
CPUID instruction, 11-75

W
WAIT/FWAIT instructions, 7-38, 7-51, 10-7, 10-13,

10-17, 10-18, 11-383
Waiting instructions, 7-39
WBINVD instruction, 10-3, 11-384

Word, 5-1
Write-back and invalidate caches, 11-384
WRMSR instruction, 2-2, 9-1, 10-3, 11-75, 11-386

X
XADD instruction, 6-15, 10-3, 11-269, 11-388
XCHG instruction, 6-15, 11-269, 11-390
XLAT/XLATB instruction, 6-37, 11-392
XOR instruction, 6-22, 11-269, 11-394

Z
ZE (division-by-zero exception) flag, FPU status

word, 7-13
Zero, floating-point format, 7-4
ZF (zero) flag, EFLAGS register, 3-10, 11-69,

11-71, 11-249, 11-273, 11-275, 11-333,
11-381

	PENTIUM® PRO FAMILY DEVELOPER'S MANUAL, VOLUME 2
	TABLE OF CONTENTS
	CHAPTER 1 ABOUT THIS MANUAL
	1.1. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S MANUAL, VOLUME 2
	1.2. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S MANUAL, VOLUME 3
	1.3. NOTATIONAL CONVENTIONS
	1.3.1. Bit and Byte Order
	1.3.2. Reserved Bits and Software Compatibility
	1.3.3. Instruction Operands
	1.3.4. Hexadecimal and Binary Numbers
	1.3.5. Segmented Addressing
	1.3.6. Exceptions

	1.4. RELATED LITERATURE

	CHAPTER 2 INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR
	2.1. NEW ARCHITECTURAL FEATURES
	2.1.1. New and Extended Instructions
	2.1.2. New Memory Management Features

	2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES
	2.2.1. Model-Specific Registers
	2.2.2. Memory Type Range Registers
	2.2.3. Machine-Check Exception and Architecture
	2.2.4. Performance Monitoring Counters

	2.3. INTRODUCTION TO THE PENTIUM PRO PROCESSOR’S ADVANCED MICROARCHITECTURE
	2.4. DETAILED DESCRIPTION OF THE PENTIUM PRO PROCESSOR MICROARCHITECTURE
	2.4.1. Memory Subsystem
	2.4.2. The Fetch/Decode Unit
	2.4.3. Instruction Pool (Reorder Buffer)
	2.4.4. Dispatch/Execute Unit
	2.4.5. Retirement Unit

	CHAPTER 3 BASIC EXECUTION ENVIRONMENT
	3.1. MODES OF OPERATION
	3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT
	3.3. MEMORY ORGANIZATION
	3.4. MODES OF OPERATION
	3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES
	3.6. REGISTERS
	3.6.1. General-Purpose Data Registers
	3.6.2. Segment Registers
	3.6.3. EFLAGS Register
	3.6.4. System Flags and IOPL Field

	3.7. INSTRUCTION POINTER
	3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

	CHAPTER 4 PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
	4.1. PROCEDURE CALL TYPES
	4.2. PROCEDURE STACK
	4.2.1. Stack Alignment
	4.2.2. Address-Size Attribute for Stack
	4.2.3. Procedure Linking Information

	4.3. CALLING PROCEDURES USING CALL AND RET
	4.3.1. Near CALL and RET Operation
	4.3.2. Far CALL and RET Operation
	4.3.3. Parameter Passing
	4.3.4. Saving Procedure State Information
	4.3.5. Calls to Other Privilege Levels
	4.3.6. CALL and RET Operation Between Privilege Levels

	4.4. INTERRUPTS AND EXCEPTIONS
	4.4.1. Call and Return Operation for Interrupt or Exception Handling Procedures
	4.4.2. Calls to an Interrupt or Exception Handler Tasks
	4.4.3. Interrupt and Exception Handling in Real-Address Mode
	4.4.4. INT n, INTO, INT3, and BOUND Instructions

	4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES
	4.5.1. ENTER Instruction
	4.5.2. LEAVE Instruction

	CHAPTER 5 DATA TYPES AND ADDRESSING MODES
	5.1. FUNDAMENTAL DATA TYPES
	5.1.1. Alignment of Words, Doublewords, and Quadwords

	5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES
	5.2.1. Integers
	5.2.2. Unsigned Integers
	5.2.3. BCD Integers
	5.2.4. Pointers
	5.2.5. Bit Fields
	5.2.6. Strings
	5.2.7. Floating-Point Data Types

	5.3. OPERAND ADDRESSING
	5.3.1. Immediate Operands
	5.3.2. Register Operands
	5.3.3. Memory Operands

	5.3.4. I/O Port Addressing

	CHAPTER 6 INSTRUCTION SET SUMMARY
	6.1. NEW INSTRUCTIONS IN THE PENTIUM PRO PROCESSOR
	6.2. INSTRUCTION SET LIST
	6.2.1. Integer Instructions
	6.2.2. Floating-Point Instructions
	6.2.3. System Instructions

	6.3. DATA MOVEMENT INSTRUCTIONS
	6.3.1. General-Purpose Data Movement Instructions
	6.3.2. Stack Manipulation Instructions

	6.4. BINARY ARITHMETIC INSTRUCTIONS
	6.4.1. Addition and Subtraction Instructions
	6.4.2. Increment and Decrement Instructions
	6.4.3. Comparison and Sign Change Instruction
	6.4.4. Multiplication and Divide Instructions

	6.5. DECIMAL ARITHMETIC INSTRUCTIONS
	6.5.1. Packed BCD Adjustment Instructions
	6.5.2. Unpacked BCD Adjustment Instructions

	6.6. LOGICAL INSTRUCTIONS
	6.7. SHIFT AND ROTATE INSTRUCTIONS
	6.7.1. Shift Instructions
	6.7.2. Double-shift Instructions
	6.7.3. Rotate Instructions

	6.8. BIT AND BYTE INSTRUCTIONS
	6.8.1. Bit Test and Modify Instructions
	6.8.2. Bit Scan Instructions
	6.8.3. Byte-Set-On-Condition Instructions
	6.8.4. Test Instruction

	6.9. CONTROL TRANSFER INSTRUCTIONS
	6.9.1. Unconditional Transfer Instructions
	6.9.2. Conditional Transfer Instructions
	6.9.3. Software Interrupts

	6.10. STRING OPERATIONS
	6.10.1. Repeating String Operations

	6.12. ENTER AND LEAVE INSTRUCTIONS
	6.11. I/O INSTRUCTIONS
	6.13. EFLAGS INSTRUCTIONS
	6.13.1. Carry and Direction Flag Instructions
	6.13.2. Interrupt Flag Instructions
	6.13.3. EFLAGS Transfer Instructions
	6.13.4. Interrupt Flag Instructions

	6.14. SEGMENT REGISTER INSTRUCTIONS
	6.14.1. Segment-Register Load and Store Instructions
	6.14.2. Far Control Transfer Instructions
	6.14.3. Software Interrupt Instructions
	6.14.4. Load Far Pointer Instructions

	6.15. MISCELLANEOUS INSTRUCTIONS
	6.15.1. Address Computation Instruction
	6.15.2. Table Lookup Instructions
	6.15.3. Processor Identification Instruction
	6.15.4. No-Operation and Undefined Instructions

	CHAPTER 7 FLOATING-POINT UNIT
	7.1 COMPATIBILITY WITH INTEL ARCHITECTURE MATH COPROCESSORS
	7.2. REAL NUMBERS AND FLOATING-POINT FORMATS
	7.2.1. Real Number System
	7.2.2. Floating-Point Format
	7.2.3. Real Number and Non-Number Encodings
	7.2.4. Indefinite

	7.3. FPU ARCHITECTURE
	7.3.1. The FPU Data Registers
	7.3.2. FPU Status Register
	7.3.3. Branching and Conditional Moves on FPU Condition Codes
	7.3.4. FPU Control Word
	7.3.5. Infinity Control Flag
	7.3.6. FPU Tag Word
	7.3.7. The Floating-Point Instruction and Data Pointers
	7.3.8. Last Instruction Opcode
	7.3.9. Saving the FPU’s State

	7.4. FLOATING-POINT DATA TYPES AND FORMATS
	7.4.1. Real Numbers
	7.4.2. Binary Integers
	7.4.3. Decimal Integers
	7.4.4. Unsupported Extended-Real Encodings

	7.5. FPU INSTRUCTION SET
	7.5.1. Escape (ESC) Instructions
	7.5.2. FPU Instruction Operands
	7.5.3. Data Transfer Instructions
	7.5.4. Load Constant Instructions
	7.5.5. Basic Arithmetic Instructions
	7.5.6. Comparison and Classification Instructions
	7.5.7. Trigonometric Instructions
	7.5.8. Pi
	7.5.9. Logarithmic, Exponential, and Scale
	7.5.10. Transcendental Instruction Accuracy
	7.5.11. FPU Control Instructions
	7.5.12. Waiting Vs. Non-Waiting Instructions
	7.5.13. Unsupported FPU Instructions

	7.6. OPERATING ON NANS
	7.7. FLOATING-POINT EXCEPTION HANDLING
	7.7.1. Arithmetic vs. Non-Arithmetic Instructions
	7.7.2. Automatic Exception Handling
	7.7.3. Software Exception Handling

	7.8. FLOATING-POINT EXCEPTION CONDITIONS
	7.8.1. Invalid Operation Exception
	7.8.2. Division-By-Zero Exception (#Z)
	7.8.3. Denormal Operand Exception (#D)
	7.8.4. Numeric Overflow Exception (#O)
	7.8.5. Numeric Underflow Exception (#U)
	7.8.6. Inexact-Result (Precision) Exception (#P)
	7.8.7. Exception Priority

	7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATION

	CHAPTER 8 INPUT/OUTPUT
	8.1. I/O PORT ADDRESSING
	8.2. I/O PORT HARDWARE
	8.3. I/O ADDRESS SPACE
	8.3.1. Memory-Mapped I/O

	8.4. I/O INSTRUCTIONS
	8.5. PROTECTED-MODE I/O
	8.5.1. I/O Privilege Level
	8.5.2. I/O Permission Bit Map
	8.5.3. Caching and Paging

	8.6. ORDERING I/O

	CHAPTER 9 PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
	9.1. PROCESSOR IDENTIFICATION
	9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE PROCESSORS

	CHAPTER 10 INTEL ARCHITECTURE COMPATIBILITY
	10.1. RESERVED BITS
	10.2. ENABLING NEW FUNCTIONS AND MODES
	10.3. DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE
	10.4. NEW INSTRUCTIONS
	10.4.1. New Pentium Pro Processor Instructions
	10.4.2. New Pentium Processor Instructions
	10.4.3. New Intel486 Processor Instructions
	10.4.4. New Intel386 Processor Instructions

	10.5. OBSOLETE INSTRUCTIONS
	10.6. UNDEFINED OPCODES
	10.7. NEW FLAGS IN THE EFLAGS REGISTER
	10.7.1. New Pentium Processor Flags
	10.7.2. New Intel486 Processor Flags
	10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel Architecture Processors

	10.8. STACK OPERATIONS
	10.8.1. PUSH SP
	10.8.2. EFLAGS Pushed On The Stack

	10.9. FPU
	10.9.1. Control Register CR0 Flags
	10.9.2. FPU Status Word
	10.9.3. FPU Control Word
	10.9.4. FPU Tag Word
	10.9.5. Data Types
	10.9.6. Floating-Point Exceptions
	10.9.7. Changes to Floating-Point Instructions
	10.9.8. Transcendental Instructions
	10.9.9. Obsolete Instructions
	10.9.10. WAIT/FWAIT Prefix Differences
	10.9.11. Operands Split Across Segments and/or Pages
	10.9.12. FPU Instruction Synchronization

	CHAPTER 11 INSTRUCTION SET REFERENCE
	11.1. INSTRUCTION FORMAT
	11.1.1. Instruction Prefixes
	11.1.2. Opcode
	11.1.3. ModR/M and SIB Bytes
	11.1.4. Displacement and Immediate Bytes

	11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES
	11.2.1. Instruction Format
	11.2.2. Operation
	11.2.3. Flags Affected
	11.2.4. FPU Flags Affected
	11.2.5. Protected Mode Exceptions
	11.2.6. Real-Address Mode Exceptions
	11.2.7. Virtual-8086 Mode Exceptions
	11.2.8. Floating-Point Exceptions

	11.3. INSTRUCTION REFERENCE
	AAA—ASCII Adjust After Addition
	AAD—ASCII Adjust AX Before Division
	AAM—ASCII Adjust AX After Multiply
	AAS—ASCII Adjust AL After Subtraction
	ADC—Add with Carry
	ADD—Add
	AND—Logical AND
	ARPL—Adjust RPL Field of Segment Selector
	BOUND—Check Array Index Against Bounds
	BSF—Bit Scan Forward
	BSR—Bit Scan Reverse
	BSWAP—Byte Swap
	BT—Bit Test
	BTC—Bit Test and Complement
	BTR—Bit Test and Reset
	BTS—Bit Test and Set
	CALL—Call Procedure
	CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword
	CDQ—Convert Double to Quad
	CLC—Clear Carry Flag
	CLD—Clear Direction Flag
	CLI—Clear Interrupt Flag
	CLTS—Clear Task-Switched Flag in CR0
	CMC—Complement Carry Flag
	CMOV cc—Conditional Move
	CMP—Compare Two Operands
	CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
	CMPXCHG—Compare and Exchange
	CMPXCHG8B—Compare and Exchange 8 Bytes
	CPUID—CPU Identification
	CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to Quadword
	CWDE—Convert Word to Doubleword
	DAA—Decimal Adjust AL after Addition
	DAS—Decimal Adjust AL after Subtraction
	DEC—Decrement by 1
	DIV—Unsigned Divide
	ENTER—Make Stack Frame for Procedure Parameters
	F2XM1—Compute 2 x –1
	FABS—Absolute Value
	FADD/FADDP/FIADD—Add
	FBLD—Load Binary Coded Decimal
	FBSTP—Store BCD Integer and Pop
	FCHS—Change Sign
	FCLEX/FNCLEX—Clear Exceptions
	FCMOV cc—Floating-Point Conditional Move
	FCOM/FCOMP/FCOMPP—Compare Real
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
	FCOS—Cosine
	FDECSTP—Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV—Divide
	FDIVR/FDIVRP/FIDIVR—Reverse Divide
	FFREE—Free Floating-Point Register
	FICOM/FICOMP—Compare Integer
	FILD—Load Integer
	FINCSTP—Increment Stack-Top Pointer
	FINIT/FNINIT—Initialize Floating-Point Unit
	FIST/FISTP—Store Integer
	FLD—Load Real
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant
	FLDCW—Load Control Word
	FLDENV—Load FPU Environment
	FMUL/FMULP/FIMUL—Multiply
	FNOP—No Operation
	FPATAN—Partial Arctangent
	FPREM—Partial Remainder
	FPREM1—Partial Remainder
	FPTAN—Partial Tangent
	FRNDINT—Round to Integer
	FRSTOR—Restore FPU State
	FSAVE/FNSAVE—Store FPU State
	FSCALE—Scale
	FSIN—Sine
	FSINCOS—Sine and Cosine
	FSQRT—Square Root
	FST/FSTP—Store Real
	FSTCW/FNSTCW—Store Control Word
	FSTENV/FNSTENV—Store FPU Environment
	FSTSW/FNSTSW—Store Status Word
	FSUB/FSUBP/FISUB—Subtract
	FSUBR/FSUBRP/FISUBR—Reverse Subtract
	FTST—TEST
	FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
	FWAIT—Wait
	FXAM—Examine
	FXCH—Exchange Register Contents
	FXTRACT—Extract Exponent and Significand
	FYL2X—Compute y ´ log2 x
	FYL2XP1—Compute y * log2 (x +1)
	HLT—Halt
	IDIV—Signed Divide
	IMUL—Signed Multiply
	IN—Input from Port
	INC—Increment by 1
	INS/INSB/INSW/INSD—Input from Port to String
	INT n/INTO/INT3—Call to Interrupt Procedure
	INVD—Invalidate Internal Caches
	INVLPG—Invalidate TLB Entry
	IRET/IRETD—Interrupt Return
	Jcc—Jump if Condition Is Met
	JMP—Jump
	LAHF—Load Status Flags into AH Register
	LAR—Load Access Rights Byte
	LDS/LES/LFS/LGS/LSS—Load Far Pointer
	LEA—Load Effective Address
	LEAVE—High Level Procedure Exit
	LES—Load Full Pointer
	LFS—Load Full Pointer
	LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
	LGS—Load Full Pointer
	LLDT—Load Local Descriptor Table Register
	LIDT—Load Interrupt Descriptor Table Register
	LMSW—Load Machine Status Word
	LOCK—Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD—Load String Operand
	LOOP/LOOP cc—Loop According to ECX Counter
	LSL—Load Segment Limit
	LSS—Load Full Pointer
	LTR—Load Task Register
	MOV—Move
	MOV—Move to/from Control Registers
	MOV—Move to/from Debug Registers
	MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
	MOVSX—Move with Sign-Extension
	MOVZX—Move with Zero-Extend
	MUL—Unsigned Multiplication of AL, AX, or EAX
	NEG—Two's Complement Negation
	NOP—No Operation
	NOT—One's Complement Negation
	OR—Logical Inclusive OR
	OUT—Output to Port
	OUTS/OUTSB/OUTSW/OUTSD—Output String to Port
	POP—Pop a Value from the Stack
	POPA/POPAD—Pop All General-Purpose Registers
	POPF/POPFD—Pop Stack into EFLAGS Register
	PUSH—Push Word or Doubleword Onto the Stack
	PUSHA/PUSHAD—Push All General-Purpose Registers
	PUSHF/PUSHFD—Push EFLAGS Register onto the Stack
	RCL/RCR/ROL/ROR-—Rotate
	RDMSR—Read from Model Specific Register
	RDPMC—Read Performance-Monitoring Counters
	RDTSC—Read Time-Stamp Counter
	REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
	RET—Return from Procedure
	ROL/ROR—Rotate
	RSM—Resume from System Management Mode
	SAHF—Store AH into Flags
	SAL/SAR/SHL/SHR—Shift Instructions
	SBB—Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD—Scan String Data
	SETcc—Set Byte on Condition
	SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
	SHL/SHR—Shift Instructions
	SHLD—Double Precision Shift Left
	SHRD—Double Precision Shift Right
	SIDT—Store Interrupt Descriptor Table Register
	SLDT—Store Local Descriptor Table Register
	SMSW—Store Machine Status Word
	STC—Set Carry Flag
	STD—Set Direction Flag
	STI—Set Interrupt Flag
	STOS/STOSB/STOSW/STOSD—Store String Data
	STR—Store Task Register
	SUB—Integer Subtraction
	TEST—Logical Compare
	UD2—Undefined Instruction
	VERR, VERW—Verify a Segment for Reading or Writing
	WAIT/FWAIT—Wait
	WBINVD—Write-Back and Invalidate Cache
	WRMSR—Write to Model Specific Register
	XADD—Exchange and Add
	XCHG—Exchange Register/Memory with Register
	XLAT/XLATB—Table Look-up Translation
	XOR—Logical Exclusive OR

	APPENDIX A EFLAGS CROSS-REFERENCE
	APPENDIX B EFLAGS CONDITION CODES
	APPENDIX C FLOATING-POINT EXCEPTIONS SUMMARY
	INDEX

